Retinal capillary networks are critically linked to neuronal health and disease. The ability to perform accurate in vivo examination of human retinal capillary networks is therefore valuable for studying mechanisms that govern retinal homeostasis and retinal vascular diseases. Speckle variance optical coherence tomography (svOCT) is a non-invasive imaging technique that has the capacity to provide angiographic information about the retinal circulation. The application of this technology for studying human retinal capillary networks however has not been validated in a quantifiable manner. We use a custom-built svOCT device to qualitatively and quantitatively study the various capillary networks in the human perifovea. Capillary networks corresponding to the nerve fibre layer (NFL), the retinal ganglion cell/superficial inner plexiform layer (RGC/sIPL), the deep inner plexiform layer/superficial inner nuclear layer (dIPL/sINL) and the deep inner nuclear layer (dINL) are imaged in 9 normal human subjects. Measurements of capillary diameter and capillary density are made from each of these networks and results are compared to post-mortem histological data acquired with confocal scanning laser microscopy. Additionally, retinal capillary measurements from high-resolution fundus fluorescein angiogram (FA) are directly compared with svOCT images from 6 eyes. We demonstrate that svOCT images of capillary networks are morphologically comparable to microscopic images of histological specimens. Similar to histological images in svOCT images, the capillaries in the NFL network run parallel to the direction of RGC axons while capillaries in the dINL network comprise a planar configuration with multiple closed loops. Capillaries in remaining networks are convoluted with a complex three-dimensional architecture. We demonstrate that there is no significant difference in capillary density measurements between svOCT and histology images for all networks. Capillary diameter was significantly greater in svOCT images compared to histology for all networks. Capillary density measurements were also higher in svOCT compared to FA. The results of this study suggest that in vivo svOCT imaging allows accurate morphometric assessment of capillary networks in the human perifovea and may provide an improved ability to render microvascular detail compared to FA. Therefore, svOCT may have broad clinical applications in the study of human retinal physiology and disease. The difference in quantitative measurements between svOCT and histology may reflect dynamic variations in the retinal microcirculation and warrants further investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mvr.2015.04.006 | DOI Listing |
Int J Mol Sci
February 2025
Department of Physiology and the Tulane Hypertension and Renal Center of Excellence, Tulane University, New Orleans, LA 70112, USA.
Angiotensin II (Ang II)-induced hypertension increases afferent (AA) and efferent (EA) arteriole resistances via the actions of Ang II on the AT1 receptor. In addition to the increased interstitial levels of Ang II, the increased arterial pressure increases interstitial ATP concentrations. In turn, ATP acts on the purinergic receptors P2X1 and P2X7 to constrict the AA, preventing increases in plasma flow and single-nephron GFR (SNGFR).
View Article and Find Full Text PDFCell Struct Funct
March 2025
Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute.
During angiogenesis, sprouting endothelial cells (ECs) migrate and eventually connect to target vessels to form new vessel branches. However, it remains unclear how these sprouting vessels migrate toward the target vessels in three-dimensional space. We performed in vivo imaging of the cerebral capillary network formation in zebrafish to investigate how sprouting tip cells migrate toward their targets.
View Article and Find Full Text PDFMed Image Anal
March 2025
Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain. Electronic address:
Diffusion Magnetic Resonance Imaging (dMRI) sensitises the MRI signal to spin motion. This includes Brownian diffusion, but also flow across intricate networks of capillaries. This effect, the intra-voxel incoherent motion (IVIM), enables microvasculature characterisation with dMRI, through metrics such as the vascular signal fraction f or the vascular Apparent Diffusion Coefficient (ADC) D.
View Article and Find Full Text PDFComput Biol Med
March 2025
Department of CSE, BUET, Dhaka 1000, Bangladesh. Electronic address:
Among various post-translational modifications (PTMs), predicting C-linked and S-linked glycosites is an essential task, yet experimental techniques such as Capillary Electrophoresis (CE), Enzymatic Deglycosylation, and Mass Spectrometry (MS) are expensive. Therefore, computational techniques are required to predict these glycosites. Here, different language model embeddings and sequential features were explored.
View Article and Find Full Text PDFFront Pharmacol
February 2025
Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
Background And Aim: Blood vessels supply oxygen, nutrients and provide gateways for immune surveillance. Since this network nourishes all tissues, vessel abnormalities contribute to many diseases, such as cancer. One of the potential targets for Docosahexaenoic Acid (DHA) in cancer is suppressing angiogenesis, a process of new blood vessel formation within tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!