CAPON modulates neuronal calcium handling and cardiac sympathetic neurotransmission during dysautonomia in hypertension.

Hypertension

Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre (C.-J.L., G.H., N.N., H.E.L., K.L., D.L., N.H., D.J.P.) and Radcliffe Department of Medicine, John Radcliffe Hospital (M.J.C.), University of Oxford, Oxford, United Kingdom.

Published: June 2015

Genome-wide association studies implicate a variant in the neuronal nitric oxide synthase adaptor protein (CAPON) in electrocardiographic QT variation and sudden cardiac death. Interestingly, nitric oxide generated by neuronal NO synthase-1 reduces norepinephrine release; however, this pathway is downregulated in animal models of cardiovascular disease. Because sympathetic hyperactivity can trigger arrhythmia, is this neural phenotype linked to CAPON dysregulation? We hypothesized that CAPON resides in cardiac sympathetic neurons and is a part of the prediseased neuronal phenotype that modulates calcium handling and neurotransmission in dysautonomia. CAPON expression was significantly reduced in the stellate ganglia of spontaneously hypertensive rats before the development of hypertension compared with age-matched Wistar-Kyoto rats. The neuronal calcium current (ICa; n=8) and intracellular calcium transient ([Ca(2+)]i; n=16) were significantly larger in the spontaneously hypertensive rat than in Wistar-Kyoto rat (P<0.05). A novel noradrenergic specific vector (Ad.PRSx8-mCherry/CAPON) significantly upregulated CAPON expression, NO synthase-1 activity, and cGMP in spontaneously hypertensive rat neurons without altering NO synthase-1 levels. Neuronal ICa and [Ca(2+)]i were significantly reduced after CAPON transduction compared with the empty vector. In addition, Ad.PRSx8-mCherry/CAPON also reduced (3)H-norepinephrine release from spontaneously hypertensive rat atria (n=7). NO synthase-1 inhibition (AAAN, 10 μmol/L; n=6) reversed these effects compared with the empty virus alone. In conclusion, targeted upregulation of CAPON decreases cardiac sympathetic hyperactivity. Moreover, dysregulation of this adaptor protein in sympathetic neurons might further amplify the negative cardiac electrophysiological properties seen with CAPON mutations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4487208PMC
http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.05290DOI Listing

Publication Analysis

Top Keywords

neuronal calcium
8
calcium handling
8
cardiac sympathetic
8
neurotransmission dysautonomia
8
nitric oxide
8
spontaneously hypertensive
8
capon
5
neuronal
5
capon modulates
4
modulates neuronal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!