DNA polymerase assays are commonly used for the detection of deoxyribonucleoside triphosphates (dNTPs) in biological samples. For better specificity and accuracy, high-performance liquid chromatography (HPLC) methods have been developed for the analysis of the four dNTPs in complex samples. Here we describe a simple method using isocratic strong anion-exchange (SAX) chromatographic separation coupled with ultraviolet detection (UV) for the analysis of the four dNTPs in budding yeast Saccharomyces cerevisiae. This method can be applied to other species of yeast or bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-2596-4_8 | DOI Listing |
J Hazard Mater
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China. Electronic address:
In nuclear wastewater treatment, ion-scavenging materials designed to trap TcO is urgently needed. However, strong acid/base, high radiation and high salt concentration of nuclear wastewater usually result in inadequate stability and adsorption capacity of the adsorbent. Herein, we report a new class of bifunctional anion-exchange olefin-linked COF (BPDC-MTMP) prepared via Knoevenagel condensation reactions, the first example exploring the synergistic integration of positively charged fragments at both nodes and linkers.
View Article and Find Full Text PDFEnviron Pollut
January 2025
State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, PR China.
Elevated concentrations of antimony (Sb) in the environment originating from natural and anthropogenic sources are of global concern due to their high toxicity and mobility. Notably, the formation of thioantimony species (e.g.
View Article and Find Full Text PDFJ Environ Health Sci Eng
June 2025
School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101 P. R. China.
Unlabelled: The presence of bromate in water poses a significant health risk. In order to effectively eliminate bromate from water, this study synthesized a series of ternary Zn-Ni-Al layered double hydroxides with varying Zn/Ni/Al atomic ratios using a co-precipitation method. The adsorbents were characterized using various techniques including XRD, Fourier transform infrared spectroscopy, and N adsorption-desorption isotherms.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34133, Republic of Korea.
Ruthenium (Ru)-based electrocatalysts have shown promise for anion exchange membrane water electrolysis (AEMWE) due to their ability to facilitate water dissociation in the hydrogen evolution reaction (HER). However, their performance is limited by strong hydrogen binding, which hinders hydrogen desorption and water re-adsorption. This study reports the development of RuNi nanoalloys supported on MoO, which optimize the hydrogen binding strength at Ru sites through modulation by adjacent Ni atoms.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China.
The dual-site synergistic catalytic mechanism on NiFeOOH suggests weak adsorption of Ni sites and strong adsorption of Fe sites limited its activity toward alkaline oxygen evolution reaction (OER). Large-scale density functional theory (DFT) calculations confirm that Co doping can increase Ni adsorption, while the metal vacancy can reduce Fe adsorption. The combined two factors can further modulate the atomic environment and optimize the free energy toward oxygen-containing intermediates, thus enhancing the OER activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!