Iron complexes of the meso-(tetraaryl)porphyrin, 5,10,15,20-tetrakis(2-chloro-6-fluorophenyl)porphine (H2ClFTPP) are reported. This unique ligand affords the opportunity to study atropisomerism in a porphyrin system containing similar substituents in the 2 and 6 positions of the meso-aryl rings. The atropisomerism displayed by the iron porphyrinates is observed to be a function of both the oxidation state of the metal and the nature of the axial ligand. In the case of iron(iii) porphyrinates, a single atropisomer is favored, whereas with the iron(ii) porphyrinate a statistical distribution of all possible atropisomers is observed. Variable temperature studies with the iron(ii) porphyrinate demonstrate that the distribution of atropisomers is maintained even at elevated temperatures. The results are discussed in the context of atropisomerism with other meso-(tetraaryl)porphyrins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5dt01122a | DOI Listing |
J Invest Dermatol
January 2025
Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China. Electronic address:
Melanoma is a devastating form of skin cancer characterized by a high mutational burden, limited treatment success, and dismal prognosis. Although immunotherapy and targeted therapies have significantly revolutionized melanoma treatment, the majority of patients fail to achieve durable responses, highlighting the urgent need for novel therapeutic strategies. Ferroptosis, an iron-dependent form of regulated cell death driven by the overwhelming accumulation of lipid peroxides, has emerged as a promising therapeutic approach in preclinical melanoma models.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium.
FLASH radiotherapy (FLASH RT) is an innovative modality in cancer treatment that delivers ultrahigh dose rates (UHDRs), distinguishing it from conventional radiotherapy (CRT). FLASH RT has demonstrated the potential to enhance the therapeutic window by reducing radiation-induced damage to normal tissues while maintaining tumor control, a phenomenon termed the FLASH effect. Despite promising outcomes, the precise mechanisms underlying the FLASH effect remain elusive and are a focal point of current research.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
In the resistance spot-welding (RSW) of galvanized complex phase (CP) steel, liquid metal embrittlement (LME) may occur, deteriorating the welded joint's performance. Based on the Auto/Steel Partnership (A/SP) standard, the joints of galvanized CP steel welded with a welding current from 7.0 kA to 14.
View Article and Find Full Text PDFMolecules
December 2024
Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030032, China.
The real-time measurement of the content of impurities such as iron and aluminium ions is one of the keys to quality evaluation in the production process of high-purity lithium carbonate; however, impurity detection has been a time-consuming process for many years, which limits the optimisation of the production of high-purity lithium carbonate. In this context, this work explores the possibility of using water-soluble fluorescent probes for the rapid detection of impurity ions. Salicylaldehyde was modified with the hydrophilic group dl-alanine to synthesise a water-soluble Al fluorescent probe (Probe A).
View Article and Find Full Text PDFChemosphere
January 2025
Department of Civil and Environmental Engineering, University of Massachusetts Lowell, Massachusetts, United States. Electronic address:
There is significant interest in monitoring abiotic decomposition of chlorinated solvents at contaminated sites due to large uncertainties regarding the rates of abiotic attenuation of trichloroethylene (PCE) and perchloroethylene (PCE) under field conditions. In this study, an innovative passive sampling tool was developed to quantify acetylene, a characteristic product of abiotic reduction of TCE or PCE, in groundwater. The sampling mechanism is based on the highly specific and facile click reaction between acetylene and an azide compound to form a biologically and chemically stable triazole product.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!