The timing of the internal circadian clock shows large inter-individual variability across the lifespan. Although the sleep-wakefulness pattern of most toddlers includes an afternoon nap, the association between napping and circadian phase in early childhood remains unexplored. This study examined differences in circadian phase and sleep between napping and non-napping toddlers. Data were collected on 20 toddlers (34.2±2.0 months; 12 females; 15 nappers). Children followed their habitual napping and non-napping sleep schedules (monitored with actigraphy) for 5 days before an in-home salivary dim light melatonin onset (DLMO) assessment. On average, napping children fell asleep during their nap opportunities on 3.6±1.2 of the 5 days before the DLMO assessment. For these napping children, melatonin onset time was 38 min later (p = 0.044; d = 0.93), actigraphically-estimated bedtime was 43 min later (p = 0.014; d = 1.24), sleep onset time was 59 min later (p = 0.006; d = 1.46), and sleep onset latency was 16 min longer (p = 0.030; d = 1.03) than those not napping. Midsleep and wake time did not differ by napping status. No difference was observed in the bedtime, sleep onset, or midsleep phase relationships with DLMO; however, the wake time phase difference was 47 min smaller for napping toddlers (p = 0.029; d = 1.23). On average, nappers had 69 min shorter nighttime sleep durations (p = 0.006; d = 1.47) and spent 49 min less time in bed (p = 0.019; d = 1.16) than non-nappers. Number of days napping was correlated with melatonin onset time (r = 0.49; p = 0.014). Our findings indicate that napping influences individual variability in melatonin onset time in early childhood. The delayed bedtimes of napping toddlers likely permits light exposure later in the evening, thereby delaying the timing of the clock and sleep. Whether the early developmental trajectory of circadian phase involves an advance associated with the decline in napping is a question necessitating longitudinal data as children transition from a biphasic to monophasic sleep-wakefulness pattern.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4411103 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0125181 | PLOS |
Sleep Med
January 2025
School of Exercise and Health, Shanghai University of Sport, Shanghai, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China; Key Laboratory of Exercise and Health Sciences, Shanghai University of Sport, Shanghai, China. Electronic address:
Introduction: Delayed sleep-wake phase disorder(DSWPD)is a serious threat to the physical and mental health. There are some problems with current clinical treatment methods, and exercise is an alternative to chronotherapy. Therefore, we aimed to study the effects of two different exercise methods, aerobic and resistance, on sleep, melatonin, inflammatory factors and mood in college students with DSWPD.
View Article and Find Full Text PDFJ Biol Rhythms
January 2025
Colorado School of Mines, Golden, Colorado.
Circadian rhythms, intrinsic 24-h cycles that drive rhythmic changes in behavior and physiology, are important for normal physiology and health. Previous work in adults has identified sex differences in circadian rhythms of melatonin, temperature, and the intrinsic period of the human circadian timing system. However, less is known about sex differences in circadian rhythms at other developmental stages.
View Article and Find Full Text PDFHandb Clin Neurol
January 2025
Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland.
The nonvisual effects of light in humans are mainly conveyed by a subset of retinal ganglion cells that contain the pigment melanopsin which renders them intrinsically photosensitive (= intrinsically photosensitive retinal ganglion cells, ipRGCs). They have direct connections to the main circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus and modulate a variety of physiological processes, pineal melatonin secretion, autonomic functions, cognitive processes such as attention, and behavior, including sleep and wakefulness. This is because efferent projections from the SCN reach other hypothalamic nuclei, the pineal gland, thalamus, basal forebrain, and the brainstem.
View Article and Find Full Text PDFHandb Clin Neurol
January 2025
Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
Sleep-wake disorders are recognized as one of the earliest symptoms of Alzheimer disease (AD). Accumulating evidence has highlighted a significant association between sleep-wake disorders and AD pathogenesis, suggesting that sleep-wake modulation could be a promising approach for postponing AD onset. The suprachiasmatic nucleus (SCN) and the pineal hormone melatonin are major central modulating components of the circadian rhythm system.
View Article and Find Full Text PDFIntroduction: Around the world, rates of induction of labour (IOL) among nulliparous mothers have increased in the last 10 years. In Australia, rates have increased over the last decade by 43%, from 32% to 46%. There is growing concern about the rapid rise in IOL before 41 weeks for nulliparous women without medical complications because of the associated increased rates of caesarean section, reduced satisfaction with birth, and birth trauma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!