Objectives: EWS/FLI-1 fusion mainly appears in Ewing's sarcoma or the primitive neuroectodermal tumors and represents a genomic marker for these tumors. However, it can appear with lower frequency in other soft tissue tumors. The paper investigates the presence of EWS/FLI-1 fusion in clinically diagnosed sarcoma belonging to different non-Ewing connective tissue tumors in order to search for a possible new biomarker valuable for investigators.
Methodology: 20 patients with soft tissue tumors, who underwent surgery, were tested. Intra-operative samples of normal and tumor tissue were collected for histopathological diagnosis and genetics determinations. The patients' RNA from tumor and normal peritumoral tissue was extracted and EWS/FLI-1 fusion screened by quantitative real-time PCR. The relative expression of the fusion in the tumor sample was compared to the similar expression in normal tissue.
Results: The amplification in the threshold zone was shown by 5 samples (25%): 2 clear cell sarcoma, 1 fibrosarcoma, 1 malignant tumor of nerve sheath, 1 metastatic adenocarcinoma. We differentiated between the unspecific amplification and concluded that these are weak positive results.
Conclusions: Genomic investigation may establish the tumor malignancy and its possible affiliation earlier than histopathology. It can support the screening of EWS/FLI-1 fusion in a larger variety of clinically diagnosed soft tissue tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397529 | PMC |
Cell Commun Signal
December 2024
Inserm UMR 1307, CNRS UMR 6075, Nantes Université, Université d'Angers, CRCI2NA, 44000, Nantes, France.
Background: Ewing sarcoma (ES), the second main pediatric bone sarcoma, is characterised by a chromosomal translocation leading to the formation of fusion proteins like EWS::FLI1. While several studies have shown that potassium channels drive the development of many tumours, limited data exist on ES. This work therefore aimed to study the transcriptional regulation of KCNA2 and define the involvement of the Kv1.
View Article and Find Full Text PDFJ Phys Chem B
November 2024
The KressWorks Foundation, 7630 Salem Woods Dr, Northville, Michigan 48168, United States.
The research presented in this paper focuses on the EWS-FLI1 oncoprotein, a critical factor in Ewing sarcoma, a rare and lethal cancer primarily affecting children and young adults. Through molecular dynamics and quantum mechanics analyses, the study explores the reactivity properties of six snapshots of the EWS-FLI1 oncoprotein, aiming to contribute to the development of targeted therapies. The investigation emphasizes the significance of understanding the molecular behavior of EWS-FLI1 for effective treatment development, utilizing computational methods such as density functional theory.
View Article and Find Full Text PDFEMBO Rep
December 2024
Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
Cohesin complexes carrying STAG1 or STAG2 organize the genome into chromatin loops. STAG2 loss-of-function mutations promote metastasis in Ewing sarcoma, a pediatric cancer driven by the fusion transcription factor EWS::FLI1. We integrated transcriptomic data from patients and cellular models to identify a STAG2-dependent gene signature associated with worse prognosis.
View Article and Find Full Text PDFOncogene
January 2025
Nantes Université, INSERM UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France.
Ewing sarcoma (ES) is characterized by EWS::FLI1 or EWS::ERG fusion proteins. Knowing that ion channels are involved in tumorigenesis, this work aimed to study the involvement of the KCNN1 gene, which encodes the SK1 potassium channel, in ES development. Bioinformatics analyses from databases were used to study KCNN1 expression in patients and cell lines.
View Article and Find Full Text PDFMol Cancer
October 2024
Department of Pediatrics, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!