Mefenamic acid taste-masked oral disintegrating tablets with enhanced solubility via molecular interaction produced by hot melt extrusion technology.

J Drug Deliv Sci Technol

Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA ; Pii Center for Pharmaceutical Technology, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.

Published: June 2015

The objective of this study was to enhance the solubility as well as to mask the intensely bitter taste of the poorly soluble drug, Mefenamic acid (MA). The taste masking and solubility of the drug was improved by using Eudragit E PO in different ratios via hot melt extrusion (HME), solid dispersion technology. Differential scanning calorimetry (DSC) studies demonstrated that MA and E PO were completely miscible up to 40% drug loads. Powder X-ray diffraction analysis indicated that MA was converted to its amorphous phase in all of the formulations. Additionally, FT-IR analysis indicated hydrogen bonding between the drug and the carrier up to 25% of drug loading. SEM images indicated aggregation of MA at over 30% of drug loading. Based on the FT-IR, SEM and dissolution results for the extrudates, two optimized formulations (20% and 25% drug loads) were selected to formulate the orally disintegrating tablets (ODTs). ODTs were successfully prepared with excellent friability and rapid disintegration time in addition to having the desired taste-masking effect. All of the extruded formulations and the ODTs were found to be physically and chemically stable over a period of 6 months at 40°C/75% RH and 12 months at 25°C/60% RH, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4404746PMC
http://dx.doi.org/10.1016/j.jddst.2015.03.003DOI Listing

Publication Analysis

Top Keywords

mefenamic acid
8
disintegrating tablets
8
hot melt
8
melt extrusion
8
drug loads
8
analysis indicated
8
25% drug
8
drug loading
8
drug
7
acid taste-masked
4

Similar Publications

Importance: Gestational exposure to nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk of adverse fetal kidney outcomes. However, details regarding timing, specific NSAIDs, and long-term childhood kidney outcomes are limited.

Objective: To evaluate the association between gestational exposure to NSAIDs and the risk of chronic kidney disease (CKD) in childhood.

View Article and Find Full Text PDF

Calibration free approaches for rapid polymorph discrimination low frequency (THz) Raman spectroscopy.

Chem Commun (Camb)

December 2024

EPSRC Future Continuous Manufacturing and Advanced Crystallisation Research Hub, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.

Application of multivariate curve resolution to non-invasive Raman spectra has been investigated for rapid on-line analysis of crystallisation processes and high-throughput screening. Exploring quantification of mefenamic acid solid forms (form I, form II, and dimethylformamide solvate) from the Raman spectra indicated excellent agreement with off-line X-ray analysis.

View Article and Find Full Text PDF

Dual effects of mefenamic acid on the I molecular complex.

Br J Pharmacol

November 2024

Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada.

Article Synopsis
  • - Mefenamic acid, a non-steroidal anti-inflammatory drug, can both enhance and inhibit cardiac ion currents formed by KCNQ1 and KCNE1 channels, revealing its dual effect on these channels, especially in patients with long and short QT syndromes.
  • - The study used whole cell patch clamp techniques and molecular dynamics simulations to investigate how mefenamic acid interacts with these channels, particularly noting its inhibition at high concentrations and its potential to preserve some current potentiation effects.
  • - Findings emphasize the importance of specific structural regions in the KCNQ1/KCNE1 channels that influence how drugs like mefenamic acid affect ion current, which has significant implications for developing treatments for certain genetic long QT syndrome mutations.*
View Article and Find Full Text PDF

Assessing plasmatic transport inhibitors of thyroid hormone in mammals in the Xenopus Eleutheroembryonic Thyroid Assay (XETA).

Environ Sci Pollut Res Int

November 2024

BASF SE, Agricultural Solutions - Ecotoxicology, Speyerer Strasse 2, 67117, Limburgerhof, Germany.

The Xenopus Eleutheroembryonic Thyroid Assay (XETA, OECD TG 248) was established as an alternative to the Amphibian Metamorphosis Assay (AMA, OECD TG 231) for the analysis of (anti-)thyroid activity of chemicals. The XETA is a New Approach Method (NAM) since the embryonic life stages used in the assay are not yet feeding independently, which renders the assay to be considered a non-animal test under many national laws. Physiologically, the used embryos are not fully developed yet, and thus there are limitations to the XETA for detecting certain mechanisms along the hypothalamic-pituitary-thyroid (HPT) axis.

View Article and Find Full Text PDF

: The study explores the potential of various deep eutectic solvents (DESs) to serve as drug delivery systems and pharmaceutical excipients. The research focuses on two primary objectives: evaluating the ability of the selected DES systems to enhance the solubility of two poorly water-soluble model drugs (IBU and MFA), and evaluating their physicochemical properties, including density, viscosity, flow behavior, surface tension, thermal stability, and water dilution effects, to determine their suitability for pharmaceutical applications. : A range of DES systems containing pharmaceutically acceptable constituents was explored, encompassing organic acid-based, sugar- and sugar alcohol-based, and hydrophobic systems, as well as menthol (MNT)-based DES systems with common pharmaceutical excipients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!