Previous studies of spinal motoneurons in the SOD1 mouse model of amyotrophic lateral sclerosis have shown alterations long before disease onset, including increased dendritic branching, increased persistent Na(+) and Ca(2+) currents, and impaired axonal transport. In this study dendritic Ca(2+) entry was investigated using two photon excitation fluorescence microscopy and whole-cell patch-clamp of juvenile (P4-11) motoneurons. Neurons were filled with both Ca(2+) Green-1 and Texas Red dextrans, and line scans performed throughout. Steps were taken to account for different sources of variability, including (1) dye filling and laser penetration, (2) dendritic anatomy, and (3) the time elapsed from the start of recording. First, Ca(2+) Green-1 fluorescence was normalized by Texas Red; next, neurons were reconstructed so anatomy could be evaluated; finally, time was recorded. Customized software detected the largest Ca(2+) transients (area under the curve) from each line scan and matched it with parameters above. Overall, larger dendritic diameter and shorter path distance from the soma were significant predictors of larger transients, while time was not significant up to 2 h (data thereafter was dropped). However, Ca(2+) transients showed additional variability. Controlling for previous factors, significant variation was found between Ca(2+) signals from different processes of the same neuron in 3/7 neurons. This could reflect differential expression of Ca(2+) channels, local neuromodulation or other variations. Finally, Ca(2+) transients in SOD1(G93A) motoneurons were significantly smaller than in non-transgenic motoneurons. In conclusion, motoneuron processes show highly variable Ca(2+) transients, but these transients are smaller overall in SOD1(G93A) motoneurons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4392694 | PMC |
http://dx.doi.org/10.3389/fncel.2015.00139 | DOI Listing |
Chem Biol Interact
January 2025
Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea. Electronic address:
Capsaicin, a polyphenol, is known to regulate energy expenditure and thermogenesis in adipocytes and muscles. However, its role in modulating uncoupling proteins (UCPs) and adenosine triphosphate (ATP)-dependent thermogenesis in muscles remains unclear. This study investigated the mechanisms underlying the role of capsaicin in modulating the UCP- and ATP-dependent thermogenesis in C2C12 myoblasts, as well as the gastrocnemius (GM) and soleus muscles (SM) of mice.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China.
This study employs first-principles molecular dynamics (FPMD) simulations combined with the Voronoi tessellation method to explore the microstructure, transport properties, electronic properties, and Raman spectra of the NaF-AlF-CaF/LiF/KF systems with varying cryolite ratios, additive types, and concentrations. The results indicate that Na, Ca, Li, and K exist in a free state in the molten salts, while Al forms complex ion groups in the form of [AlF] with F, and free F also exists in the molten salts. In the NaF-AlF-CaF system, the average Al-F distance is slightly shorter than that in the other two systems, while the Al-F coordination number is higher in NaF-AlF-LiF.
View Article and Find Full Text PDFJ Biophotonics
January 2025
Univ. Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
A challenge in neuroimaging is acquiring frame sequences at high temporal resolution from the largest possible number of pixels. Measuring 1%-10% fluorescence changes normally requires 12-bit or higher bit depth, constraining the frame size allowing imaging in the kHz range. We resolved Ca or membrane potential signals from cell populations or single neurons in brain slices by acquiring fluorescence at 8-bit depth and by binning pixels offline, achieving unprecedented frame sizes at kHz rates.
View Article and Find Full Text PDFCell Biosci
January 2025
State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200438, People's Republic of China.
Background: Neuropathic pain resulting from spinal cord injury (SCI) is associated with persistent hyperactivity of primary nociceptors. Anandamide (AEA) has been reported to modulate neuronal excitability and synaptic transmission through activation of cannabinoid type-1 receptors (CB1Rs) and transient receptor potential vanilloid 1 (TRPV1). However, the role of AEA and these receptors in the hyperactivity of nociceptors after SCI remains unclear.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Biology, University of Miami, Coral Gables, FL 33143 USA
Neuroendocrine cells react to physical, chemical, and synaptic signals originating from tissues and the nervous system, releasing hormones that regulate various body functions beyond the synapse. Neuroendocrine cells are often embedded in complex tissues making direct tests of their activation mechanisms and signaling effects difficult to study. In the nematode worm , four uterine-vulval (uv1) neuroendocrine cells sit above the vulval canal next to the egg-laying circuit, releasing tyramine and neuropeptides that feedback to inhibit egg laying.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!