Objective: Host-microbial interactions are central in health and disease. Monosodium urate monohydrate (MSU) crystals cause gout by activating the NLRP3 inflammasome, leading to interleukin-1β (IL-1β) production and neutrophil recruitment. This study was undertaken to investigate the relevance of gut microbiota, acetate, and the metabolite-sensing receptor GPR43 in regulating inflammation in a murine model of gout.
Methods: Gout was induced by the injection of MSU crystals into the knee joints of mice. Macrophages from the various animals were stimulated to determine inflammasome activation and production of reactive oxygen species (ROS).
Results: Injection of MSU crystals caused joint inflammation, as seen by neutrophil influx, hypernociception, and production of IL-1β and CXCL1. These parameters were greatly decreased in germ-free mice, mice treated with antibiotics, and GPR-43-deficient mice. Recolonization or administration of acetate to germ-free mice restored inflammation in response to injection of MSU crystals. In vitro, macrophages produced ROS and assembled the inflammasome when stimulated with MSU. Macrophages from germ-free animals produced little ROS, and there was little inflammasome assembly. Similar results were observed in macrophages from GPR-43-deficient mice. Treatment of germ-free mice with acetate restored in vitro responsiveness of macrophages to MSU crystals.
Conclusion: In the absence of microbiota, there is decreased production of short-chain fatty acids that are necessary for adequate inflammasome assembly and IL-1β production in a manner that is at least partially dependent on GPR43. These results clearly show that the commensal microbiota shapes the host's ability to respond to an inflammasome-dependent acute inflammatory stimulus outside the gut.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/art.39107 | DOI Listing |
Arch Biochem Biophys
January 2025
Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan. Electronic address:
Aim: The aim of the current study was to investigate the potential therapeutic effect of kaurenoic acid (KA) against Monosodium Urate Crystals (MSU)- induced acute gout by downregulation of NF-κB signaling pathway, mitigating inflammation and oxidative stress produced by MSU crystals. KA potentially targeted NF-κB pathway activation and provided comprehensive insights through multiple approaches. This was accomplished by advanced analytical techniques.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutical Biology, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia.
The deposition of monosodium urate (MSU) crystals within joint spaces produces a painful inflammatory condition known as gout, a specific form of arthritis. The condition calls for a combined curative and preventive management model. A new development in the approach to gout is that of NLRP3-targeted biologic agents, such as monoclonal therapies, to provide more accurate treatment by blocking specific pro-inflammatory cytokines.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
College of Korea Medicine, Woosuk University, Jeonju-si 54986, Republic of Korea.
Monosodium urate crystal accumulation in the joints is the cause of gout, an inflammatory arthritis that is initiated by elevated serum uric acid levels. It is the most prevalent form of inflammatory arthritis, affecting millions worldwide, and requires effective treatments. The necessity for alternatives with fewer side effects is underscored by the frequent adverse effects of conventional therapies, such as urate-lowering drugs.
View Article and Find Full Text PDFJ Clin Med
January 2025
Departments of Neurosurgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
The accumulation of uric acid in arteriosclerotic plaques has recently attracted attention. Because the interaction between hyperuricemia and atherosclerosis is complex, the details remain obscure. We aimed to elucidate the clinical effect of monosodium urate monohydrate (MSU) deposition on carotid plaques.
View Article and Find Full Text PDFGout is a disease caused by the deposit of monosodium urate (MSU) crystals that produce joint inflammation and subcutaneous nodules (tophi). The treatment of gout aims to reduce serum uric acid (sUA) levels by administering urate-lowering therapies (ULT) such as xanthine oxidase inhibitors (XOI: allopurinol, febuxostat) or uricosurics (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!