Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by muscular atrophy, spasticity, and bulbar signs caused by loss of upper and lower motor neurons. Evidence suggests that ALS additionally affects other brain areas including premotor cortex and supplementary motor area. Here, we studied movement execution and inhibition in ALS patients using a stop-signal paradigm and functional magnetic resonance imaging. Seventeen ALS patients and 17 age-matched healthy controls performed a stop-signal task that required responding with a button press to a right- or left-pointing black arrow (go-stimuli). In stop-trials, a red arrow (stop-stimulus) was presented shortly after the black arrow indicating to withhold the prepared movement. Patients had by trend higher reaction times in go-trials but did not differ significantly in their inhibition performance. Patients showed stronger inhibition-related activity in inferior, superior, and middle frontal gyri as well as in putamen and pallidum. Error-related activity, conversely, was found to be stronger in healthy controls, particularly in the insula bilaterally. Patients also showed increased activity in the motor cortex during button presses. The results provide evidence for altered prefrontal and subcortical networks underlying motor execution, motor inhibition, and error monitoring in ALS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6869134 | PMC |
http://dx.doi.org/10.1002/hbm.22814 | DOI Listing |
Cell Rep
January 2025
Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Department of Applied Chemistry, National Chiayi University, Chiayi City 600, Taiwan; Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 115, Taiwan. Electronic address:
The toxicity of C9ORF72-encoded polyproline-arginine (poly-PR) dipeptide is associated with its ability to disrupt the liquid-liquid phase separation of intrinsically disordered proteins participating in the formation of membraneless organelles, such as the nucleolus and paraspeckles. Amyotrophic lateral sclerosis (ALS)-related TAR DNA-binding protein 43 (TDP-43) also undergoes phase separation to form nuclear condensates (NCs) in response to stress. However, whether poly-PR alters the nuclear condensation of TDP-43 in ALS remains unclear.
View Article and Find Full Text PDFNeurogenetics
January 2025
Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
Intermediate CAG repeats from 29 to 33 in the ATXN2 gene contributes to the risk of amyotrophic lateral sclerosis (ALS) in European and Asian populations. In this study, 148 ALS patients of multiethnic descent: Chinese (56.1%), Malay (24.
View Article and Find Full Text PDFTher Adv Neurol Disord
January 2025
Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, P.R. China.
Background: Amyotrophic lateral sclerosis (ALS) is a rapidly progressing and rare neurodegenerative disease. Therefore, evaluating the risk factors affecting the survival of patients with ALS is crucial. Constipation, a common but overlooked symptom of ALS, can be effectively managed.
View Article and Find Full Text PDFNat Ment Health
January 2025
Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK.
While numerous reviews have assessed the association between traumatic brain injury (TBI) and various mental and physical health outcomes, a comprehensive evaluation of the scope, validity, and quality of evidence is lacking. Here we present an umbrella review of a wide range of health outcomes following TBI and outline outcome risks across subpopulations. On 17 May 2023, we searched Embase, Medline, Global Health, PsycINFO, and Cochrane Database of Systematic Reviews for systematic reviews and meta-analyses.
View Article and Find Full Text PDFNeuronal pentraxin 2 (NP2) plays a significant role in synaptic plasticity, neuronal survival, and excitatory synapse regulation. Emerging research suggests that NP2 is implicated in the pathogenesis of various neurological disorders, including neurodegenerative diseases, neuropsychiatric disorders, and neuropathies. This literature review extensively analyzes NP2's role in these conditions, thereby highlighting its contributions to synaptic dysfunction, neuroinflammation, and neurotoxic protein aggregation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!