Many biomineralized organisms have evolved highly oriented nanostructures to perform specific functions. One key example is the abrasion-resistant rod-like microstructure found in the radular teeth of Chitons (Cryptochiton stelleri), a large mollusk. The teeth consist of a soft core and a hard shell that is abrasion resistant under extreme mechanical loads with which they are subjected during the scraping process. Such remarkable mechanical properties are achieved through a hierarchical arrangement of nanostructured magnetite rods surrounded with α-chitin. We present a combined biomimetic approach in which designs were analyzed with additive manufacturing, experiments, analytical and computational models to gain insights into the abrasion resistance and toughness of rod-like microstructures. Staggered configurations of hard hexagonal rods surrounded by thin weak interfacial material were printed, and mechanically characterized with a cube-corner indenter. Experimental results demonstrate a higher contact resistance and stiffness for the staggered alignments compared to randomly distributed fibrous materials. Moreover, we reveal an optimal rod aspect ratio that lead to an increase in the site-specific properties measured by indentation. Anisotropy has a significant effect (up to 50%) on the Young's modulus in directions parallel and perpendicular to the longitudinal axis of the rods, and 30% on hardness and fracture toughness. Optical microscopy suggests that energy is dissipated in the form of median cracks when the load is parallel to the rods and lateral cracks when the load is perpendicular to the rods. Computational models suggest that inelastic deformation of the rods at early stages of indentation can vary the resistance to penetration. As such, we found that the mechanical behavior of the system is influenced by interfacial shear strain which influences the lateral load transfer and therefore the spread of damage. This new methodology can help to elucidate the evolutionary designs of biomineralized microstructures and understand the tolerance to fracture and damage of chiton radular teeth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2015.03.026 | DOI Listing |
Chem Sci
January 2025
Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong Wollongong New South Wales 2522 Australia
Although electrostatic catalysis can enhance the kinetics and selectivity of reactions to produce greener synthetic processes, the highly directional nature of electrostatic interactions has limited widespread application. In this study, the influence of oriented electric fields (OEF) on radical addition and atom abstraction reactions are systematically explored with ion-trap mass spectrometry using structurally diverse distonic radical ions that maintain spatially separated charge and radical moieties. When installed on rigid molecular scaffolds, charged functional groups lock the magnitude and orientation of the internal electric field with respect to the radical site, creating an OEF which tunes the reactivity across the set of gas-phase carbon-centred radical reactions.
View Article and Find Full Text PDFCureus
December 2024
Department of Radiological Technology, Fujieda Municipal General Hospital, Fujieda, JPN.
Purpose This study aimed to clarify which positions are beneficial for patients with pathological lung diseases, such as acute respiratory distress syndrome, by obtaining lung ventilation and deformable vector field (DVF) images using Deformable Image Registration (DIR). Methods Thirteen healthy volunteers (5 female, 8 male) provided informed consent to participate to observe changes in normal lungs. DIR imaging was processed using the B-spline algorithm to obtain BH-CTVI (inhale, exhale) in four body positions (supine, prone, right lateral, left lateral) using DIR-based breath-hold CT ventilation imaging (BH-CTVI).
View Article and Find Full Text PDFOrg Lett
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China.
A palladium-catalyzed tandem reaction of 1-(2-iodophenyl)-3-arylprop-2-yn-1-ones and 1-(2-azidophenyl)propargyl ethers is developed to provide the rapid construction of a fused polycyclic indenone-indole scaffold under mild conditions. The reaction proceeds via a highly ordered process involving Sonogashira coupling, propargyl-allenyl isomerization, allene-azide cycloaddition, denitrogenation, and diradical coupling. The proposed reaction mechanism is supported by experimental and computational studies.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
Taming highly enolizable aldehydes for catalytic asymmetric C-C coupling with nucleophiles remains an elusive challenge compared to widely explored simple alkyl or aryl aldehydes. Herein, we use ThDP-dependent enzymes to realize the direct C-C coupling of highly enolizable 2-phosphonate aldehydes with in situ-generated dynamically reversible nucleophiles (acyl anions). Unlike NHC-mediated reactions that yield complex mixtures of multiple adducts, our enzymatic process selectively produces biologically active β-hydroxy phosphonates with high yields (up to 95%) and excellent enantioselectivities (up to 99% ee).
View Article and Find Full Text PDFInt J Nurs Stud
January 2025
NIHR Collaboration for Applied Research (Wessex), University of Southampton, Southampton, United Kingdom. Electronic address:
Ongoing challenges in the provision of care, driven by growing care complexity and nursing shortages, prompt us to reconsider the basis for efficient division of nursing labour. In organising nursing work, traditionally the focus has been on identifying nursing tasks that can be delegated to other less expensive and less highly educated staff, in order to make best use of scarce resources. We argue that nursing care activities are connected and intertwined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!