Staphylococcus epidermidis (S. epidermidis), one of the leading etiological agents of nosocomial infections poses a significant economic burden globally. Introduced in 2000, linezolid (LZD) has become an important antibiotic, used in nearly seventy countries worldwide to treat infections caused by Gram-positive pathogens such as meticillin-resistant Staphylococcus and Streptococcus species along with vancomycin-resistant enterococci. Resistance to LZD in clinical settings remains rare. Here, we report the emergence of meticillin resistant S. epidermidis (MRSE) clinical isolates from two voluntary general acute hospitals exhibiting higher than typically reported levels of LZD resistance (MIC>256 μg/ml). The MRSE ST-2 clone isolated from eight patients (2010-2011) not only possessed resistance-conferring mutations such as G2576T in domain V of 23S rRNA gene (as determined by HRM-PCR analysis) and R172C substitution in the ribosomal protein L3, but also carried the cfr gene (the only known transmissible mechanism of LZD resistance). All isolates possessed several key biofilm-associated genes (such as icaA, icaD, aap and atlE) and resistance to multiple clinically significant antibiotics was recorded. This study reports the earliest incidence (2010) of clinical MRSE in the Republic of Ireland demonstrating multiple LZD resistance mechanisms both mutational and potentially transmissible, and characterises this emerging resistance from a molecular perspective.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jiac.2015.03.012 | DOI Listing |
Infect Drug Resist
January 2025
Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China.
Background: Contezolid (CZD) is an analog of Linezolid (LZD) that has demonstrated potent in vitro and in vivo activity against tuberculosis (TB) while presenting a safer side-effect profile. In this study, we evaluated the early bactericidal activity (EBA) of CZD compared to LZD, with LZD serving as a control.
Methods: Naive, smear-positive pulmonary TB patients were enrolled and randomly assigned to receive either a 14-day monotherapy regimen of 600 mg LZD once daily (QD) or 800 mg CZD twice daily (BID).
J Infect Dis
January 2025
Division of Global Health Equity, Brigham and Women's Hospital, Boston, MA, United States.
Introduction: Most drug-resistant tuberculosis (DR-TB) occurs due to transmission of unsuspected or ineffectively treated DR-TB. The duration of treatment to stop person-to-person spread of DR-TB is uncertain. We evaluated the impact of novel regimens, including BPaL, on DR-TB transmission using the human-to-guinea pig (H-GP) transmission model.
View Article and Find Full Text PDFFront Microbiol
November 2024
Department of Chemistry, Umeå, University, Umeå, Sweden.
Introduction: Tuberculosis (TB) treatment typically involves a tailored combination of four antibiotics based on the drug resistance profile of the infecting strain. The increasing drug resistance of () requires the development of novel antibiotics to ensure effective treatment regimens. Gallium (Ga) is being explored as a repurposed drug against TB due to its ability to inhibit growth and disrupt iron metabolism.
View Article and Find Full Text PDFAntimicrob Agents Chemother
December 2024
Public Health Agency of Sweden, Solna, Sweden.
This comparative study aimed at qualifying a broth microdilution (BMD) assay for phenotypic drug susceptibility testing (pDST) of complex (MTBC) strains for implementation in a routine DST workflow. The assay was developed based on the EUCAST (European Committee on Antimicrobial Susceptibility Testing) reference protocol for determination of the minimum inhibitory concentration (MIC) of 14 anti-tuberculous drugs (isoniazid [INH], rifampicin [RIF], ethambutol [EMB], amikacin [AMI], moxifloxacin [MFX], levofloxacin [LFX], bedaquiline [BDQ], clofazimine [CFZ], delamanid [DLM], pretomanid [PA], para-aminosalicylic acid [PAS], linezolid [LZD], ethionamide [ETH], and cycloserine [CS]). Forty MTBC strains with various drug resistance profiles were tested to determine the agreement between MIC results and genotypic drug susceptibility testing (gDST) results derived from whole-genome sequencing (WGS).
View Article and Find Full Text PDFCureus
November 2024
Department of Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to Be University), Karad, IND.
Background , once benign intestinal flora, has transformed into formidable nosocomial pathogens as a result of the accelerated emergence of antibiotic resistance represents a major global health challenge, particularly within hospital settings. has grown more prevalent in nosocomial infections, such as urinary tract infections (UTIs), surgical site infections (SSIs) and bacteremia. The potential emergence of vancomycin-resistant (VRE) strains further complicates treatment choices for multi-drug resistant (MDR) infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!