Retinal diseases characterized by pathologic retinal angiogenesis are the leading causes of blindness worldwide. Although therapies directed toward vascular endothelial growth factor (VEGF) represent a significant step forward in the treatment of proliferative retinopathies, further improvements are needed. In the last few years, an intense research activity has focused around the use of herbal and traditional natural medicines as an alternative for slowing down the progression of proliferative retinopathies. In the present study, we investigated the antiangiogenic effects of acetyl-11-keto-β-boswellic acid (AKBA), one of the active principles derived from the plant Boswellia serrata, used in Ayurvedic systems of medicine. We studied the antiangiogenic properties of AKBA using the mouse model of oxygen-induced retinopathy (OIR), which mimics the neovascular response seen in human retinopathy of prematurity. We first evaluated the effects of subcutaneously administered AKBA on the expression/activity of proteins which are known to play a role in the OIR model. In the retina, AKBA increased expression and activity of Src homology region 2 domain-containing phosphatase 1 and reduced the phosphorylation of the transcription factor signal transducer and activator of transcription 3 (STAT3) as well as VEGF expression and VEGF receptor (VEGFR)-2 phosphorylation. Likely as a result of these effects, AKBA significantly reduced retinal neovascularization in OIR mice without affecting retinal cell survival and retinal function. Using retinal explants cultured in hypoxia and an activator of STAT3 phosphorylation, we showed that the AKBA-induced inhibition of VEGFR-2 phosphorylation is likely to be mediated by a mechanism depending on an SHP-1/STAT3/VEGF axis. In the OIR model, neovascularization results from the activation of retinal endothelial cells, therefore we evaluated whether AKBA affected the angiogenic response of human retinal microvascular endothelial cells (HRMECs). We observed that AKBA reduced proliferation, migration and tube formation in HRMECs stimulated with exogenous VEGF, while it reduced migration and tube formation in untreated HRMECs. Taken together, our results demonstrate the antiangiogenic effects of AKBA in a model of pathologic neovascularization, providing a rationale for further investigation of AKBA as a promising therapeutic agent to reduce the impact of proliferative retinopathies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exer.2015.04.011 | DOI Listing |
Ophthalmic Genet
January 2025
Department of Ophthalmology, PSG Institute of Medical Sciences and Research, Coimbatore, India.
Context: The role of genetic factors in the development of diabetic retinopathy is evident from the fact that only 50% of patients with the non-proliferative type of diabetic retinopathy progress to proliferative diabetic retinopathy. Though the K469E polymorphism of the ICAM-1 (Intercellular Adhesion Molecule-1) gene is known to increase the risk of developing Diabetic Retinopathy (DR) among Type 2 diabetic patients, its role in the development of severe DR has not been extensively studied.
Aim: Hence, we aimed to determine the risk due to association of K469E polymorphism of ICAM-1 gene and sight threatening diabetic retinopathy.
Retina
January 2025
Department of Ophthalmology, Amsterdam UMC, Amsterdam, The Netherlands.
Purpose: To evaluate the presence and progression of maculopathy in patients with sickle cell disease (SCD) using Optical Coherence Tomography (OCT) and OCT-Angiography (OCTA), and to identify clinical/laboratory risk factors for progression during follow-up.
Methods: Complete ophthalmic examination, including fundoscopy and macular SD-OCT/OCTA scans, was performed in consecutive SCD-patients (HbSS/HbSβ0/HbSβ+/HbSC genotype) during baseline and follow-up visits. SCR stage was based on fundoscopy instead of the Goldberg classification, since fluorescein angiography was not routinely used.
FASEB J
January 2025
Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Retinal pathological angiogenesis (PA) is a common hallmark in proliferative retinopathies, including age-related macular degeneration (AMD), proliferative diabetic retinopathy (PDR), and retinopathy of prematurity (ROP). The mechanisms underlying PA is complex and incompletely understood. In this study, we investigated the role of extracellular matrix (ECM) protein biglycan (BGN) in PA using an oxygen-induced retinopathy (OIR) mouse model, along with hypoxia (1% O) conditions for incubating pericytes and endothelial cells in vitro.
View Article and Find Full Text PDFJ Transl Med
December 2024
Department of Ophthalmology, Chongqing Emergency Medical Center, Chongqing, 400000, China.
Background: The relationship between cigarette smoking and diabetic retinopathy (DR) remains controversial, as existing studies have yielded inconsistent results. This study aimed to investigate the association between smoking and both the development and progression of DR.
Methods: This study encompassed two complementary approaches.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!