Clinical study and stability assessment of a novel transcutaneous influenza vaccination using a dissolving microneedle patch.

Biomaterials

Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan. Electronic address:

Published: July 2015

Transcutaneous immunization (TCI) is an attractive vaccination method compared with conventional injectable vaccines because it is easier to administer without pain. We developed a dissolving microneedle patch (MicroHyala, MH) made of hyaluronic acid and showed that transcutaneous vaccination using MH induced a strong immune response against various antigens in mice. In the present study, we investigated the clinical safety and efficacy of a novel transcutaneous influenza vaccine using MH (flu-MH), which contains trivalent influenza hemagglutinins (15 μg each). Subjects of the TCI group were treated transcutaneously with flu-MH, and were compared with subjects who received subcutaneous injections of a solution containing 15 μg of each influenza antigen (SCI group). No severe local or systemic adverse events were detected in either group and immune responses against A/H1N1 and A/H3N2 strains were induced equally in the TCI and SCI groups. Moreover, the efficacy of the vaccine against the B strain in the TCI group was stronger than that in the SCI group. Influenza vaccination using MH is promising for practical use as an easy and effective method to replace conventional injections systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2015.04.007DOI Listing

Publication Analysis

Top Keywords

novel transcutaneous
8
transcutaneous influenza
8
influenza vaccination
8
dissolving microneedle
8
microneedle patch
8
tci group
8
sci group
8
influenza
5
group
5
clinical study
4

Similar Publications

Essential tremor (ET) is one of the most prevalent nerve-related movement disorders, most commonly affecting the hands during voluntary movements or while maintaining posture. Unlike tremors in neurodegenerative conditions, ET is not observed at rest. Continued research is essential to optimize treatment strategies and address the unmet need for sustainable, patient-centered therapies that minimize side effects and enhance long-term quality of life (QoL) for individuals with ET.

View Article and Find Full Text PDF

Rationale: Chronic knee pain is a common health issue that requires effective and noninvasive treatment. We devised a novel noninvasive approach using ultrasound-guided electrical nerve reactivation (ENR) in which ultrasound is used to identify the genicular nerve (GN). Then, transcutaneous low-frequency stimulation is applied for 10 seconds.

View Article and Find Full Text PDF

Background: Various adjunct therapies are available for wound healing in addition to standard care. Topical oxygen therapy (TCOT) is one such novel therapy. We conducted a systematic review and meta-analysis to evaluate the role of TCOT in the healing of cutaneous wounds of any etiology.

View Article and Find Full Text PDF

The role of autonomic nervous system (ANS) modulation in chronic neck pain remains elusive. Transcutaneous vagus nerve stimulation (t-VNS) provides a novel, non-invasive means of potentially mitigating chronic neck pain. This study aimed to assess the effects of ANS modulation on heart rate variability (HRV), pain perception, and neck disability.

View Article and Find Full Text PDF

Transcutaneous Non-Invasive Vagus Nerve Stimulation: Changing the Paradigm for Stroke and Atrial Fibrillation Therapies?

Biomolecules

November 2024

Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Cerebrovascular Sciences and Neuromodulation, Würzburg University, 97080 Würzburg, Germany.

A new therapeutic approach, known as neuromodulation therapy-which encompasses a variety of interventional techniques meant to alter the nervous system in order to achieve therapeutic effects-has emerged in recent years as a result of advancements in neuroscience. Currently used methods for neuromodulation include direct and indirect approaches, as well as invasive and non-invasive interventions. For instance, the two primary methods of stimulating the vagus nerve (VN) are invasive VN stimulation (iVNS) and transcutaneous VN stimulation (tVNS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!