Multifunctional nanoparticles which integrate the therapeutic agents and bio-imaging agents into one carrier are emerging as a promising therapeutic platform. Herein, GaOOH:Cr(3+) was firstly synthesized using improved hydrothermal method (atmospheric pressure, 95 °C), and by manipulating the pH of the reaction medium, GaOOH:Cr(3+) with different sizes (125.70 nm, 200.60 nm and 313.90 nm) were synthesized. Then β-Ga2O3:Cr(3+) nanoparticles with porous structures were developed as a result of the calcination of GaOOH:Cr(3+). The fabricated, porous β-Ga2O3:Cr(3+) nanoparticles could effectively absorb doxorubicin hydrochloride (DOX) (loading rate: 8% approximately) and had near infrared photoluminescence with a 695 nm emission. Furthermore, β-Ga2O3:Cr(3+) nanoparticles were coated with l-Cys modified hyaluronic acid (HA-Cys) by exploiting the electrostatic interaction and the cross-link effect of disulfide bond to improve the stability. The DOX loaded HA-Cys coated β-Ga2O3:Cr(3+) nanoparticles (HA/β-Ga2O3:Cr(3+)/DOX) showed an oxidation-reduction sensitive drug release behavior. The HA-Cys coated β-Ga2O3:Cr(3+) nanoparticles showed a low cytotoxicity on MCF-7 and Hela cell lines. The cellular uptake of HA/β-Ga2O3:Cr(3+)/DOX using the near infrared photoluminescence of β-Ga2O3:Cr(3+) nanoparticles and the fluorescence of DOX demonstrated the HA/β-Ga2O3:Cr(3+)/DOX could internalize into tumor cells quickly, which was affected by the size and shape of β-Ga2O3:Cr(3+)nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2015.04.010DOI Listing

Publication Analysis

Top Keywords

β-ga2o3cr3+ nanoparticles
24
infrared photoluminescence
12
ha-cys coated
8
coated β-ga2o3cr3+
8
β-ga2o3cr3+
7
nanoparticles
7
β-ga2o3cr3+ nanoparticle
4
nanoparticle platform
4
platform infrared
4
photoluminescence drug
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!