We describe a new in operando approach for the investigation of heterogeneous processes at solid/liquid interfaces with elemental and chemical specificity which combines the preparation of thin liquid films using the meniscus method with standing wave ambient pressure X-ray photoelectron spectroscopy [Nemšák et al., Nat. Commun., 5, 5441 (2014)]. This technique provides information about the chemical composition across liquid/solid interfaces with sub-nanometer depth resolution and under realistic conditions of solution composition and concentration, pH, as well as electrical bias. In this article, we discuss the basics of the technique and present the first results of measurements on KOH/Ni interfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5fd00003c | DOI Listing |
Talanta
January 2025
Ampere - Laboratório de Plataformas Eletroquímicas. Departamento de Química, Universidade Federal de Santa Catarina, 880400-900, Florianópolis, SC, Brazil. Electronic address:
Nicotine (NIC) detection is vital for monitoring its presence in various environments, including tobacco products, electronic cigarettes, and clinical samples; NIC's widespread use and health implications necessitate precise and reliable detection methods as it is linked to diseases such as lung cancer and vascular disorders. In this study, we developed and characterized Au tadpole-like nanostructures immobilized onto titanium oxide (TiO) to provide a cost-effective and sensitive NIC detection material. The comprehensive characterization of the composite used transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), showing the robustness of the synthesis.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China. Electronic address:
Photocatalytic reduction of CO to valuable chemicals is an effective strategy to address the environmental problems and energy crisis. Covalent organic frameworks (COFs) are emerging materials known for their excellent diverse properties, albeit limited by special synthetic methods, including high temperature (120 °C) and the necessity of inert gas atmosphere. Herein, a novel synthesis method under room temperature and air was optimized to form TpPa-COF (TP-COF) by p-phenylenediamine (Pa) and 2,4,6-triformyl phloroglucinol (Tp) through electrostatic self-assembly.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081 China.
Metal-organic frameworks (MOFs) derived materials are extensively utilized in wastewater treatment owing to their remarkable catalytic efficacy and durability. This study exploited iron-cerium-based bimetallic metal-organic framework (FeCe-MOF) as a sacrificial template, which was subsequently calcined at 700 °C to produce an iron-cerium-based bimetallic carbon nanospheres (FeCe@C). The FeCe@C has active sites of bimetallic Fe and Ce derivatives, demonstrating exceptional activation efficiency for persulfate, resulting in approximately 98.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520-IEMN, F-59000 Lille, France.
The effect of growth temperature and subsequent annealing on the epitaxy of both single- and few-layer TaSe on Se-terminated GaP(111) substrates is investigated. The selective growth of the 1T and 1H phases is shown up to 1 ML according to X-ray and ultraviolet photoelectron spectroscopies. The 1H monolayer, favored at low temperatures, exhibits a very homogeneous coverage after annealing, while the 1T ML, grown at high temperatures, is characterized by a better in-plane orientation.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Physics, National Chung Hsing University, Taichung 402, Taiwan.
Next-generation real-time gas sensors are crucial for detecting multiple gases simultaneously with high sensitivity and selectivity. In this study, ternary metal sulfide (PbSnS)-incorporated metal oxide (SnO) heterostructures were synthesized via a one-step hydrothermal method. Characterizations such as X-ray diffraction, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy confirmed the successful formation of PbSnS/SnO heterostructures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!