The members of the MAF family of transcription factors are homologs of v-Maf -the oncogenic component of the avian retrovirus AS42. The MAF family is subdivided into 2 groups, small and large MAFs. To elucidate the role of the large MAF transcription factors in the endocrine pancreas, we analyzed large MAF gene knockout mice. It has been shown that Mafa(-/-) mice develop phenotypes including abnormal islet structure soon after birth. This study revealed that Ins1 and Ins2 transcripts and the protein contents were significantly reduced in Mafa(-/-) mice at embryonic day 18.5. In addition, Mafa(-/-);Mafb(-/-) mice contained less than 10% of the insulin transcript and protein of those of wild-type mice, suggesting that Mafa and Mafb cooperate to maintain insulin levels at the embryonic stage. On the other hand, the number of insulin-positive cells in Mafa(-/-) mice was comparable to that of wild-type mice, and even under a Mafb-deficient background the number of insulin-positive cells was not decreased, suggesting that Mafb plays a dominant role in embryonic β-cell development. We also found that at 20 weeks of age Mafa(-/-);Mafb(+/-) mice showed a higher fasting blood glucose level than single Mafa(-/-) mice. In summary, our results indicate that Mafa is necessary for the maintenance of normal insulin levels even in embryos and that Mafb is important for the maintenance of fasting blood glucose levels in the Mafa-deficient background in adults.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548003PMC
http://dx.doi.org/10.1538/expanim.15-0001DOI Listing

Publication Analysis

Top Keywords

mafa-/- mice
16
large maf
12
transcription factors
12
mice
9
role large
8
maf transcription
8
endocrine pancreas
8
maf family
8
wild-type mice
8
insulin levels
8

Similar Publications

Aims/hypothesis: The key pancreatic beta cell transcription factor v-maf musculoaponeurotic fibrosarcoma oncogene homologue A (MafA) is critical for the maintenance of mature beta cell function and phenotype. The expression levels and/or activities of MafA are reduced when beta cells are chronically exposed to diabetogenic stress, such as hyperglycaemia (i.e.

View Article and Find Full Text PDF

Glucose transporter type 2 (GLUT2), encoded by the Slc2a2 gene, is essential for glucose-stimulated insulin secretion (GSIS) in pancreatic islet β-cells, and low expression of GLUT2 is associated with β-cell dysfunction during the progression of type 2 diabetes in humans and animal models. Glucocorticoids are stress hormones that regulate inflammation and metabolism through the glucocorticoid receptor (GR), a member of the nuclear receptor superfamily, and synthetic glucocorticoids are widely used for the treatment of inflammatory disorders. Prolonged exposure to glucocorticoids induces β-cell dysfunction and diabetes, but the effects of Slc2a2 gene repression in β-cells, if any, and the mechanisms involved remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • * Increased levels of complement C3 have been observed in the blood and islet β cells of T2DM patients, while treatments such as insulin and metformin lower C3 levels and support β-cell function.
  • * C3 promotes β-cell dedifferentiation by activating the Wnt/β-catenin pathway, and inhibiting C3 may offer a new approach for treating T2DM.
View Article and Find Full Text PDF

SPINT1, a membrane-anchored serine protease inhibitor, regulates cascades of pericellular proteolysis while its tissue-specific functions remain incompletely characterized. In this study, we generate Spint1-lacZ knock-in mice and observe Spint1 expression in embryonic pancreatic epithelium. Pancreas-specific Spint1 disruption significantly diminishes islet size and mass, causing glucose intolerance and downregulation of MAFA and insulin.

View Article and Find Full Text PDF

Aims: To develop a novel nanomicelle system to target and eradicate CD133-expressing lung cancer stem cells (CSCs) while imaging lung cancer.

Methods: Averatinib nanomicelles with CD133 aptamers incorporated with gadolinium imaging reagents (M-Afa&Gd-CD133) were synthesized. The anticancer and imaging activities of M-Afa&Gd-CD133 were evaluated both in vitro and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!