Use of power ultrasound to enhance the thermal inactivation of Clostridium perfringens spores in beef slurry.

Int J Food Microbiol

Department of Chemical and Materials Engineering, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand. Electronic address:

Published: August 2015

Clostridium perfringens is a pathogen of concern in pasteurised foods. The main objective of this study was to use power ultrasound to enhance the thermal inactivation of C. perfringens spores in beef slurry. The effect of simultaneous ultrasound and heat (TS, thermosonication) on the spore inactivation in beef slurry was first investigated. At 75 °C, a 60 min TS process (24 kHz, 0.33 W/g) resulted in a less than 1.5 log reduction for both C. perfringens NZRM 898 and NZRM 2621 spores. Then, the thermal inactivation first order kinetic parameters of C. perfringens spores in beef slurry were estimated for the two strains. The D105 °C- and z-values were 2.5 min and 10.6 °C for NZRM 898 and 1.8 min and 10.9 °C for NZRM 2621. After, the effect of a spore heat shock followed by ultrasound on its thermal inactivation in beef slurry was investigated. This heat shock+ultrasound pretreatment was able to double the spore thermal inactivation rate in beef slurry. For example at 95 °C D-value of 20.2 min decreased to 9.8 min, demonstrating that spore exposure to heat shock followed by ultrasonication enhanced its thermal inactivation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijfoodmicro.2015.04.013DOI Listing

Publication Analysis

Top Keywords

thermal inactivation
24
beef slurry
24
perfringens spores
12
spores beef
12
power ultrasound
8
ultrasound enhance
8
enhance thermal
8
clostridium perfringens
8
inactivation beef
8
slurry investigated
8

Similar Publications

Over 80% of biologic drugs, and 90% of vaccines, require temperature-controlled conditions throughout the supply chain to minimize thermal inactivation and contamination. This cold chain is costly, requires stringent oversight, and is impractical in remote environments. Here, we report chemical dispersants that non-covalently solvate proteins within fluorous liquids to alter their thermodynamic equilibrium and reduce conformational flexibility.

View Article and Find Full Text PDF

Visible light photocatalysts hold great promise for water purification, yet research on highly efficient, non-toxic photocatalysts is limited. This study synthesized novel g-CN/AlOOH photocatalytic nanocomposites via thermal condensation, enhancing adsorption and visible light degradation by 36-fold and 11-fold, respectively, compared to g-CN alone. The nanocomposites achieved a 98% removal rate of methyl orange under xenon lamp irradiation (>400 nm) for 1 hour.

View Article and Find Full Text PDF

Molecular characteristics of emulsifiers such as their molecular weight (MW) and surface charge, not only affect the stability of the emulsion but also can have an impact on its capacity to either inhibit or promote microbial proliferation. These characteristics can affect the behavior of pathogens such as Typhimurium in emulsion systems. The growth and thermal resistance of .

View Article and Find Full Text PDF

() presents significant clinical challenges. This study evaluated the synergistic effects of a β-lactam and β-lactamase inhibitor combination against and explored the underlying mechanisms. Synergy was assessed through MIC tests and time-kill studies, and binding affinities of nine β-lactams and BLIs to eight target receptors (L,D-transpeptidases [LDT] 1-5, D,D-carboxypeptidase, penicillin-binding protein [PBP] B, and PBP-lipo) were assessed using mass spectrometry and kinetic studies.

View Article and Find Full Text PDF

Lacosamide (LCM) selectively increases the slow inactivation of voltage-gated sodium channels (VGSCs) and is a N-methyl D-aspartate acid (NMDA) receptor glycine site antagonist. Therefore, it can be used in dryness-related hyperexcitability of corneal cold receptor nerve terminals. Ocular in-situ gels remain in liquid form until they reach the target site, where they undergo a sol-gel transformation in response to specific stimuli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!