Athrombogenic hydrogel coatings for medical devices--Examination of biological properties.

Colloids Surf B Biointerfaces

Artificial Heart Laboratory, Foundation for Cardiac Surgery Development, Wolności 345A, 41-800 Zabrze, Poland.

Published: June 2015

In the article the authors present hydrogel coatings prepared from polyvinylpyrrolidone (PVP) macromolecules, which are chemically bonded to polyurethane (PU) substrate. The coating is designed to improve the surface hemocompatibility of blood-contacting medical devices. The coating was characterized in terms of physical properties (swelling ratio, hydrogel density, surface morphology, coating thickness, coating durability). In order to examine surface hemocompatibility, the materials were contacted with whole human blood under arterial flow simulated conditions followed by calculation of platelet consumption and the number of platelet aggregates. Samples were also contacted with platelet-poor plasma; the number of surface-adsorbed fibrinogen molecules was measured using ELISA assay. Finally, the inflammatory reaction after implantation was assessed, using New Zealand rabbits. The designed coating is characterized by high water content and excellent durability in aqueous environment - over a 35-day period, no significant changes in coating thickness were observed. Experiments with blood proved twice the reduction in adsorption of serum-derived fibrinogen together with a moderate reduction in the number of platelet aggregates formed during the contact of the material with blood. The analysis of an inflammatory reaction after the implantation confirmed high biocompatibility of the fabricated materials - studies have shown no toxic effects of the implanted material on the surrounding animal tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2015.04.008DOI Listing

Publication Analysis

Top Keywords

hydrogel coatings
8
surface hemocompatibility
8
coating characterized
8
coating thickness
8
number platelet
8
platelet aggregates
8
inflammatory reaction
8
reaction implantation
8
coating
6
athrombogenic hydrogel
4

Similar Publications

Hydrogel coils in intracranial aneurysm treatment: a multicenter, prospective, randomized open-label trial.

J Neurosurg

January 2025

19Division of Medical Statistics, Division of Data Science, Foundation for Biomedical Research and Innovation at Kobe; and.

Objective: Studies have demonstrated the effectiveness of hydrogel-coated coils (HGCs) to achieve the composite endpoint of decreased recanalization rates and greater safety. Herein, the authors aimed to assess the true ability of second-generation HGCs to prevent recanalization.

Methods: This randomized controlled study, the HYBRID (Hydrocoil Versus Bare Platinum Coil in Recanalization Imaging Data) trial, comparing HGCs with bare platinum coils (BPCs), was conducted in 43 Japanese institutions.

View Article and Find Full Text PDF

Multiple crosslinked, self-healing, and shape-adaptable hydrogel laden with pain-relieving chitosan@borneol nanoparticles for infected burn wound healing.

Theranostics

January 2025

Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.

Next-generation wound dressings with multiple biological functions hold promise for addressing the complications and pain associated with burn wounds. A hydrogel wound dressing loaded with a pain-relieving drug was developed for treating infected burn wounds. Polyvinyl alcohol chemically grafted with gallic acid (PVA-GA), sodium alginate chemically grafted with 3-aminobenzeneboronic acid (SA-PBA), Zn, and chitosan-coated borneol nanoparticles with anti-inflammatory and pain-relieving activities were combined to afford a nanoparticle-loaded hydrogel with a PVA-GA/Zn/SA-PBA network crosslinked via multiple physicochemical interactions.

View Article and Find Full Text PDF

Quantitative Assessment of Microbial Transmission onto Environmental Surfaces Using Thermoresponsive Gelatin Hydrogels as a Finger Mimetic under In Situ-Mimicking Conditions.

Adv Healthc Mater

January 2025

Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials and Technology, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland.

Surface-mediated transmission of pathogens plays a key role in healthcare-associated infections. However, proper techniques for its quantitative analysis are lacking, making it challenging to develop novel antimicrobial and anti-fouling surfaces to reduce pathogen spread via environmental surfaces. This study demonstrates a gelatin hydrogel-based touch transfer test, the HydroTouch test, to evaluate pathogen transmission on high-touch surfaces under semi-dry conditions.

View Article and Find Full Text PDF

The increasing demand for energy in cooling systems due to global warming presents a significant challenge. Conventional air-conditioning methods exacerbate climate change by contributing to heightened carbon emissions. Glass facades, renowned in modern architecture for their versatility and aesthetic appeal, inadvertently trap solar radiation, resulting in heat buildup and the greenhouse effect.

View Article and Find Full Text PDF

Microneedles as transdermal drug delivery system for enhancing skin disease treatment.

Acta Pharm Sin B

December 2024

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.

Microneedles (MNs) serve as a revolutionary paradigm in transdermal drug delivery, heralding a viable resolution to the formidable barriers presented by the cutaneous interface. This review examines MNs as an advanced approach to enhancing dermatological pathology management. It explores the complex dermis structure and highlights the limitations of traditional transdermal methods, emphasizing MNs' advantage in bypassing the stratum corneum to deliver drugs directly to the subdermal matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!