Dictyostelium acetoacetyl-CoA thiolase is a dual-localizing enzyme that localizes to peroxisomes, mitochondria and the cytosol.

Microbiology (Reading)

1​ Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan.

Published: July 2015

Acetoacetyl-CoA thiolase is an enzyme that catalyses both the CoA-dependent thiolytic cleavage of acetoacetyl-CoA and the reverse condensation reaction. In Dictyostelium discoideum, acetoacetyl-CoA thiolase (DdAcat) is encoded by a single acat gene. The aim of this study was to assess the localization of DdAcat and to determine the mechanism of its cellular localization. Subcellular localization of DdAcat was investigated using a fusion protein with GFP, and it was found to be localized to peroxisomes. The findings showed that the targeting signal of DdAcat to peroxisomes is a unique nonapeptide sequence (15RMYTTAKNL23) similar to the conserved peroxisomal targeting signal-2 (PTS-2). Cell fractionation experiments revealed that DdAcat also exists in the cytosol. Distribution to the cytosol was caused by translational initiation from the second Met codon at position 16. The first 18 N-terminal residues also exhibited function as a mitochondrial targeting signal (MTS). These results indicate that DdAcat is a dual-localizing enzyme that localizes to peroxisomes, mitochondria and the cytosol using both PTS-2 and MTS signals, which overlap each other near the N-terminus, and the alternative utilization of start codons.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.000102DOI Listing

Publication Analysis

Top Keywords

acetoacetyl-coa thiolase
12
dual-localizing enzyme
8
enzyme localizes
8
localizes peroxisomes
8
peroxisomes mitochondria
8
mitochondria cytosol
8
localization ddacat
8
targeting signal
8
ddacat
6
dictyostelium acetoacetyl-coa
4

Similar Publications

Mitochondrial fatty acid oxidation regulates monocytic type I interferon signaling via histone acetylation.

Sci Adv

January 2025

Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.

Although lipid-derived acetyl-coenzyme A (CoA) is a major carbon source for histone acetylation, the contribution of fatty acid β-oxidation (FAO) to this process remains poorly characterized. To investigate this, we generated mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1, distal FAO enzyme) knockout macrophages. C-carbon tracing confirmed reduced FA-derived carbon incorporation into histone H3, and RNA sequencing identified diminished interferon-stimulated gene expression in the absence of ACAT1.

View Article and Find Full Text PDF

Recent therapeutic strategies have highlighted the potential of β-hydroxybutyrate (BHB) and α-ketoglutarate (α-KG) as effective anticancer agents, particularly for colon cancer. These metabolites can modulate cellular metabolism and induce epigenetic changes, inhibiting tumor growth. Nonetheless, certain cancer cells may utilize ketone bodies, like BHB as nutrient sources under hypoxic conditions, potentially reducing treatment efficacy.

View Article and Find Full Text PDF

Aging and apolipoprotein E4 () are the two most significant risk factors for late-onset Alzheimer's disease (LOAD). Compared to , disrupts cholesterol homeostasis, increases cholesteryl esters (CEs), and exacerbates neuroinflammation in brain cells, including microglia. Targeting CEs and neuroinflammation could be a novel strategy to ameliorate -dependent phenotypes.

View Article and Find Full Text PDF

An alternative route for β-hydroxybutyrate metabolism supports fatty acid synthesis in cancer cells.

bioRxiv

November 2024

Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503.

Cancer cells are exposed to diverse metabolites in the tumor microenvironment that are used to support the synthesis of nucleotides, amino acids, and lipids needed for rapid cell proliferation. Recent work has shown that ketone bodies such as β-hydroxybutyrate (β-OHB), which are elevated in circulation under fasting conditions or low glycemic diets, can serve as an alternative fuel that is metabolized in the mitochondria to provide acetyl-CoA for the tricarboxylic acid (TCA) cycle in some tumors. Here, we discover a non-canonical route for β-OHB metabolism, in which β-OHB can bypass the TCA cycle to generate cytosolic acetyl-CoA for fatty acid synthesis in cancer cells.

View Article and Find Full Text PDF

ACAT1 Induces the Differentiation of Glioblastoma Cells by Rewiring Choline Metabolism.

Int J Biol Sci

November 2024

Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.

Abnormal differentiation of cells is a hallmark of malignancy. Induction of cancer-cell differentiation is emerging as a novel therapeutic strategy with low toxicity in hematological malignances, but whether such treatment can be used in solid tumors is not known. Here, we uncovered a novel function of acetyl coenzyme A acetyltransferase (ACAT1) in regulating the differentiation of glioblastoma (GBM) cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!