A quantitative proteomic analysis of the tegumental proteins from Schistosoma mansoni schistosomula reveals novel potential therapeutic targets.

Int J Parasitol

Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.

Published: July 2015

The tegument of Schistosoma mansoni plays an integral role in host-parasite interactions, particularly during the transition from the free-living cercariae to the intra-mammalian schistosomula stages. This developmental period is characterised by the transition from a trilaminate surface to a heptalaminate tegument that plays key roles in immune evasion, nutrition and excretion. Proteins exposed at the surface membranes of newly transformed schistosomula are therefore thought to be prime targets for the development of new vaccines and drugs for schistosomiasis. Using a combination of tegumental labelling and high-throughput quantitative proteomics, more than 450 proteins were identified on the apical membrane of S. mansoni schistosomula, of which 200 had significantly regulated expression profiles at different stages of schistosomula development in vitro, including glucose transporters, sterols, heat shock proteins, antioxidant enzymes and peptidases. Current vaccine antigens were identified on the apical membrane (Sm-TSP-1, calpain) or sub-tegumental (Sm-TSP-2, Sm29) fractions of the schistosomula, displaying localisation patterns that, in some cases, differ from that in the adult stage fluke. This work provides the first known in-depth proteomic analysis of the surface-exposed proteins in the schistosomula tegument, and some of the proteins identified are clear targets for the generation of new vaccines and drugs against schistosomiasis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpara.2015.03.004DOI Listing

Publication Analysis

Top Keywords

proteomic analysis
8
schistosoma mansoni
8
mansoni schistosomula
8
vaccines drugs
8
drugs schistosomiasis
8
proteins identified
8
identified apical
8
apical membrane
8
schistosomula
7
proteins
6

Similar Publications

The developmental lipidome of Nippostrongylus brasiliensis.

Parasit Vectors

January 2025

Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.

Background: Nippostrongylus brasiliensis-a nematode of rodents-is commonly used as a model to study the immunobiology of parasitic nematodes. It is a member of the Strongylida-a large order of socioeconomically important parasitic nematodes of animals. Lipids are known to play essential roles in nematode biology, influencing cellular membranes, energy storage and/or signalling.

View Article and Find Full Text PDF

Proteomic analysis of Trichoderma harzianum secretome and their role in the biosynthesis of zinc/iron oxide nanoparticles.

Sci Rep

January 2025

Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.

The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles.

View Article and Find Full Text PDF

The characteristics of data produced by omics technologies are pivotal, as they critically influence the feasibility and effectiveness of computational methods applied in downstream analyses, such as data harmonization and differential abundance analyses. Furthermore, variability in these data characteristics across datasets plays a crucial role, leading to diverging outcomes in benchmarking studies, which are essential for guiding the selection of appropriate analysis methods in all omics fields. Additionally, downstream analysis tools are often developed and applied within specific omics communities due to the presumed differences in data characteristics attributed to each omics technology.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia is a malignant lymphoproliferative disorder for which primary or acquired drug resistance represents a major challenge. To investigate the underlying molecular mechanisms, we generate a mouse model of ibrutinib resistance, in which, after initial treatment response, relapse under therapy occurrs with an aggressive outgrowth of malignant cells, resembling observations in patients. A comparative analysis of exome, transcriptome and proteome of sorted leukemic murine cells during treatment and after relapse suggests alterations in the proteasome activity as a driver of ibrutinib resistance.

View Article and Find Full Text PDF

Background: Protein abundance levels, sensitive to both physiological changes and external interventions, are useful for assessing the Alzheimer's disease (AD) risk and treatment efficacy. However, identifying proteomic prognostic markers for AD is challenging by their high dimensionality and inherent correlations.

Methods: Our study analyzed 1128 plasma proteins, measured by the SOMAscan platform, from 858 participants 55 years and older (mean age 63 years, 52.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!