Mechanistic studies on the reversible photophysical properties of carbon nanodots at different pH.

Colloids Surf B Biointerfaces

State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; College of Chemistry and Material Science, Hubei Engineering University, Hubei 432000, PR China. Electronic address:

Published: June 2015

The pH-dependent photoluminescence (PL) behavior of carbon nanodots (C-dots) and its mechanism has been exhaustively studied in this work. The PL and UV-vis absorption spectra are reversible in the pH between 3 and 13. We speculate that two kinds of reactions (fast and slow) occurring at the surface of C-dots may contribute to this pH-dependent PL behavior. When C-dots solutions are switched to acidic conditions, they will quickly self-assembled aggregate into larger particles and surface oxygen-related groups of C-dots would be slowly oxidized at room temperature. Moreover, it should be noted that this is the first direct observation of self-assembled aggregation of C-dots under acidic conditions. In addition, the optimal PL spectra of C-dots blue-shift while their sizes increase, so-called 'inverse PL shift' phenomenon is also observed. Meanwhile, as the solution is adjusted to alkaline conditions, a structural tautomerization of C-dots rapidly takes place and hydrogenation/deoxygenation reaction proceeds in a much slower rate. Furthermore, through distinct decay dynamics as well as the characterizations of C-dots at different pHs, the PL properties are proposed to be mainly related to the surface states of C-dots.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2015.04.012DOI Listing

Publication Analysis

Top Keywords

c-dots
9
carbon nanodots
8
acidic conditions
8
mechanistic studies
4
studies reversible
4
reversible photophysical
4
photophysical properties
4
properties carbon
4
nanodots ph-dependent
4
ph-dependent photoluminescence
4

Similar Publications

L-tryptophan carbon dots as a fluorescent probe for malachite green detection.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Electronics, School of Electrical and Electronics Engineering, SASTRA deemed to be University, Thanjavur 613401, India. Electronic address:

Development of a rapid and sensitive detection method for hazardous dyes attracts considerable research interest. In this work, L-Tryptophan-based Carbon dots were developed as a fluorescence sensor for the detection of Malachite green (MG). Green fluorescent L-Trp-C-dots were synthesized by a simple pyrolysis technique using L-Trp as the starting precursor.

View Article and Find Full Text PDF

China is the country with the most abundant bamboo resources in the world. Using bamboo as a raw material for pulping and papermaking can save a lot of wood and protect forests. Bamboo pulping enterprises mostly adopt sulfate processes to produce a large amount of black liquor (BL), which contains monosaccharides, polysaccharides, oligosaccharides, pectin, lignin, etc.

View Article and Find Full Text PDF

Screen-Printed Nanohybrid Palladium-Based Electrodes for Fast and Simple Determination of Estradiol in Livestock.

ACS Omega

December 2024

Departamento de Química Analítica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil.

One of the main challenges in animal breeding systems is determining estradiol (E2) in livestock samples as simple and minimally invasive as possible, Thus, a nonenzymatic biosensor screen-printed electrode (SPE) was developed by modifying nanohybrid palladium nanoparticles (PdNPs), and carbon dots anchored on a nanosilica particle (PdNPs/C.dots/SiO), denominated SPE/PdNPs/C.dots/SiO, and successfully tested for the direct detection of estradiol in livestock samples.

View Article and Find Full Text PDF

In this work, environmentally friendly fluorescent carbon dots (C-dots) were developed for the purpose of thiram identification in the leaves of perilla plants. Powdered plant petals from were hydrothermally combined to create C-dots. Analytical techniques, such as scanning electron microscopy, energy dispersive X-ray spectroscopy, high resolution transmission electron microscopy, Raman spectroscopy, ultraviolet spectroscopy, Fourier transmission infrared spectroscopy, and photoluminescence were employed to examine the properties of C-dots.

View Article and Find Full Text PDF

Poor wound healing in diabetics is primarily caused by persistently high levels of inflammation and recurrent bacterial infections. The catalytic therapy technique based on nanozyme medicine has emerged as a beacon of hope for patients with diabetic wounds. However, the use of a single-atom nanozyme may still have limitations, including nanozyme burst release, immunological clearance and insufficient antibacterial activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!