The paper presents a computer-based assessment for facioscapulohumeral dystrophy (FSHD) diagnosis through characterisation of the fat and oedema percentages in the muscle region. A novel multi-slice method for the muscle-region segmentation in the T1-weighted magnetic resonance images is proposed using principles of the live-wire technique to find the path representing the muscle-region border. For this purpose, an exponential cost function is used that incorporates the edge information obtained after applying the edge-enhancement algorithm formerly designed for the fingerprint enhancement. The difference between the automatic segmentation and manual segmentation performed by a medical specialists is characterised using the Zijdenbos similarity index, indicating a high accuracy of the proposed method. Finally, the fat and oedema are quantified from the muscle region in the T1-weighted and T2-STIR magnetic resonance images, respectively, using the fuzzy c-mean clustering approach for 10 FSHD patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2015.03.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!