Widespread macromolecular interaction perturbations in human genetic disorders.

Cell

Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science (CEGS), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Electronic address:

Published: April 2015

How disease-associated mutations impair protein activities in the context of biological networks remains mostly undetermined. Although a few renowned alleles are well characterized, functional information is missing for over 100,000 disease-associated variants. Here we functionally profile several thousand missense mutations across a spectrum of Mendelian disorders using various interaction assays. The majority of disease-associated alleles exhibit wild-type chaperone binding profiles, suggesting they preserve protein folding or stability. While common variants from healthy individuals rarely affect interactions, two-thirds of disease-associated alleles perturb protein-protein interactions, with half corresponding to "edgetic" alleles affecting only a subset of interactions while leaving most other interactions unperturbed. With transcription factors, many alleles that leave protein-protein interactions intact affect DNA binding. Different mutations in the same gene leading to different interaction profiles often result in distinct disease phenotypes. Thus disease-associated alleles that perturb distinct protein activities rather than grossly affecting folding and stability are relatively widespread.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441215PMC
http://dx.doi.org/10.1016/j.cell.2015.04.013DOI Listing

Publication Analysis

Top Keywords

disease-associated alleles
12
protein activities
8
folding stability
8
alleles perturb
8
protein-protein interactions
8
alleles
6
disease-associated
5
interactions
5
widespread macromolecular
4
macromolecular interaction
4

Similar Publications

Background: Disease-causing copy-number variants (CNVs) often encompass contiguous genes and can be detected using chromosomal microarray analysis (CMA). Conversely, CNVs affecting single disease-causing genes have historically been challenging to detect due to their small sizes.

Methods: A custom comprehensive CMA (Baylor College of Medicine - BCM v11.

View Article and Find Full Text PDF

There is growing evidence that a wide range of human diseases and physiological traits are influenced by genetic variation of cis-regulatory elements. We and others have shown that a subset of promoter elements, termed Epromoters, also function as enhancer regulators of distal genes. This opens a paradigm in the study of regulatory variants, as single nucleotide polymorphisms (SNPs) within Epromoters might influence the expression of several (distal) genes at the same time, which could disentangle the identification of disease-associated genes.

View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder leading to end-stage renal disease. ADPKD arises from mutations in the and genes, which encode polycystin 1 (PC1) and polycystin 2 (PC2), respectively. PC2 is a non-selective cation channel, and disease-linked mutations disrupt normal cellular processes, including signaling and fluid secretion.

View Article and Find Full Text PDF

Bi-allelic variants in DAP3 result in reduced assembly of the mitoribosomal small subunit with altered apoptosis and a Perrault-syndrome-spectrum phenotype.

Am J Hum Genet

January 2025

Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK. Electronic address:

The mitochondrial ribosome (mitoribosome) synthesizes 13 protein subunits of the oxidative phosphorylation system encoded by the mitochondrial genome. The mitoribosome is composed of 12S rRNA, 16S rRNA, and 82 mitoribosomal proteins encoded by nuclear genes. To date, variants in 12 genes encoding mitoribosomal proteins are associated with rare monogenic disorders and frequently show combined oxidative phosphorylation deficiency.

View Article and Find Full Text PDF

Structural plasticity of the coiled-coil interactions in human SFPQ.

Nucleic Acids Res

December 2024

School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.

The proteins SFPQ (splicing Factor Proline/Glutamine rich) and NONO (non-POU domain-containing octamer-binding protein) are mammalian members of the Drosophila Behaviour/Human Splicing (DBHS) protein family, which share 76% sequence identity in their conserved 320 amino acid DBHS domain. SFPQ and NONO are involved in all steps of post-transcriptional regulation and are primarily located in mammalian paraspeckles: liquid phase-separated, ribonucleoprotein sub-nuclear bodies templated by NEAT1 long non-coding RNA. A combination of structured and low-complexity regions provide polyvalent interaction interfaces that facilitate homo- and heterodimerisation, polymerisation, interactions with oligonucleotides, mRNA, long non-coding RNA, and liquid phase-separation, all of which have been implicated in cellular homeostasis and neurological diseases including neuroblastoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!