We investigate low temperature grown, abrupt, epitaxial, nonintermixed, defect-free n-type and p-type Fe/GaAs(110) interfaces by cross-sectional scanning tunneling microscopy and spectroscopy with atomic resolution. The probed local density of states shows that a model of the ideal metal-semiconductor interface requires a combination of metal-induced gap states and bond polarization at the interface which is nicely corroborated by density functional calculations. A three-dimensional finite element model of the space charge region yields a precise value for the Schottky barrier height.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.114.146804 | DOI Listing |
J Am Chem Soc
January 2025
Dipartimento di Scienze Fisiche e Chimiche, Universita degli Studi dellAquila, Coppito, 67100 L'Aquila, Italy.
We present a comprehensive theoretical study, using state-of-the-art density functional theory simulations, of the structural and electrochemical properties of amorphous pristine and iron-doped nickel-(oxy)hydroxide catalyst films for water oxidation in alkaline solutions, referred to as NiCat and Fe:NiCat. Our simulations accurately capture the structural changes in locally ordered units, as reported by X-ray absorption spectroscopy, when the catalyst films are activated by exposure to a positive potential. We emphasize the critical role of proton-coupled electron transfer in the reversible oxidation of Ni(II) to Ni(III/IV) during this activation.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
January 2025
Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 3, 91058, Erlangen, Bayern, Germany.
Purpose: Breast cancer remains one of the most prevalent cancers globally, necessitating effective early screening and diagnosis. This study investigates the effectiveness and generalizability of our recently proposed data augmentation technique, attention-guided erasing (AGE), across various transfer learning classification tasks for breast abnormality classification in mammography.
Methods: AGE utilizes attention head visualizations from DINO self-supervised pretraining to weakly localize regions of interest (ROI) in images.
Clin Res Cardiol
January 2025
Department of Cardiology, Medical School Theodor Fontane, University Hospital Ruppin-Brandenburg, Neuruppin, Germany.
Background: Heart failure (HF) is a heterogeneous clinical syndrome affecting a growing global population. Due to the high incidence of cardiovascular risk factors, a large proportion of the Western population is at risk for heart failure. Oxidative stress and inflammation play a crucial role in the pathophysiology of heart failure with preserved ejection fraction (HFpEF).
View Article and Find Full Text PDFJ Mol Model
January 2025
State Key Laboratory of Polyolefins and Catalysis, Shanghai, 200062, People's Republic of China.
Context: This study aims to reveal the reaction mechanisms of H and O on the NiO(100) and Ce-doped NiO(100) surfaces using the density functional theory (DFT) combined with the on-site Coulomb correction (DFT + U) method. It was found that H and O react favorably on the reduced surfaces of both materials. However, after the oxygen vacancy is filled, the activation energy for the reaction between H₂ and lattice oxygen increases.
View Article and Find Full Text PDFJ Chem Phys
January 2025
School of Chemistry, Beihang University, Beijing 100191, China.
Dynamic density functional theory (DDFT) is a fruitful approach for modeling polymer dynamics, benefiting from its multiscale and hybrid nature. However, the Onsager coefficient, the only free parameter in DDFT, is primarily derived empirically, limiting the accuracy and broad application of DDFT. Herein, we propose a machine learning-based, bottom-up workflow to directly extract the Onsager coefficient from molecular simulations, circumventing partly heuristic assumptions in traditional approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!