Origin and alteration of organic matter in termite mounds from different feeding guilds of the Amazon rainforests.

PLoS One

Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53115, Bonn, Germany.

Published: January 2016

The impact of termites on nutrient cycling and tropical soil formation depends on their feeding habits and related material transformation. The identification of food sources, however, is difficult, because they are variable and changed by termite activity and nest construction. Here, we related the sources and alteration of organic matter in nests from seven different termite genera and feeding habits in the Terra Firme rainforests to the properties of potential food sources soil, wood, and microepiphytes. Chemical analyses comprised isotopic composition of C and N, cellulosic (CPS), non-cellulosic (NCPS), and N-containing saccharides, and molecular composition screening using pyrolysis-field ionization mass spectrometry (Py-FIMS). The isotopic analysis revealed higher soil δ13C (-27.4‰) and δ15N (6.6‰) values in nests of wood feeding Nasutitermes and Cornitermes than in wood samples (δ13C = -29.1‰, δ15N = 3.4‰), reflecting stable-isotope enrichment with organic matter alterations during or after nest construction. This result was confirmed by elevated NCPS:CPS ratios, indicating a preferential cellulose decomposition in the nests. High portions of muramic acid (MurAc) pointed to the participation of bacteria in the transformation processes. Non-metric multidimensional scaling (MDS) revealed increasing geophagy in the sequence Termes < Embiratermes < Anoplotermes and increasing xylophagy for Cornitermes < Nasutitermes., and that the nest material of Constrictotermes was similar to the microepiphytes sample, confirming the report that Constrictotermes belongs to the microepiphyte-feeders. We therewith document that nest chemistry of rainforest termites shows variations and evidence of modification by microbial processes, but nevertheless it primarily reflects the trophic niches of the constructors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409291PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0123790PLOS

Publication Analysis

Top Keywords

organic matter
12
alteration organic
8
feeding habits
8
food sources
8
nest construction
8
origin alteration
4
matter termite
4
termite mounds
4
feeding
4
mounds feeding
4

Similar Publications

Tibetan barley (Hordeum vulgare) accounts for over 70% of the total food production in the Tibetan Plateau. However, continuous cropping of Tibetan barley causes soil degradation, reduces soil quality and causes yield decline. Here we explore the benefits of crop rotation with wheat and rape to improve crop yield and soil quality.

View Article and Find Full Text PDF

Humic substances modulate bacterial communities and mitigate adverse effects of temperature stress in coral reef organisms.

J Appl Microbiol

January 2025

Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Aveiro, Portugal.

Aims: In the present study, we tested if terrestrially-derived humic substances (HS) could mitigate the adverse effects of elevated temperature and UVB radiation on the bacterial communities of two hard corals (Montipora digitata and Montipora capricornis), one soft coral (Sarcophyton glaucum), sediment and water. We also examined the impact of temperature, UVB radiation and HS supplementation on coral photosynthetic activity, a proxy for coral bleaching.

Methods And Results: We performed a multifactorial experiment using a randomized-controlled microcosm setup.

View Article and Find Full Text PDF

Algal organic matter alters protistan community structure and assembly processes in coastal sediments.

Eur J Protistol

January 2025

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China. Electronic address:

Diatom blooms are a global ecological perturbation that releases algal organic matter (AOM), significantly affecting coastal ecosystems by altering microbial community dynamics. AOM, derived from algal cell lysis, may serve as a nutrient source influencing protistan communities. However, the effects of AOM on protistan ecology, including the community structure and assembly processes, remain largely unexplored in coastal sediments.

View Article and Find Full Text PDF

Diarrhetic shellfish toxins (DSTs) are widespread in marine environments, posing potential threats to marine ecosystems, shellfish aquaculture, and human health. Despite their prevalence, knowledge of the stability of dissolved DSTs in seawater is still limited. This study aimed to investigate the effects of bacteria, temperature, and irradiation on the stability of dissolved okadaic acid (OA) and dinophysistoxin-1 (DTX1) in seawater.

View Article and Find Full Text PDF

Microbial metabolism in wormcast affected the perturbation on soil organic matter by microplastics under decabromodiphenyl ethane stress.

J Hazard Mater

January 2025

State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China. Electronic address:

Large-scale plastic wastes annually inevitably induce co-pollution of microplastics (MPs) and novel brominated flame retardants (NBFRs), while gaps remain concerning their effect on terrestrial function. We investigated the impact of polylactic acid (PLA) or polyethylene (PE) MPs after aging in soil-earthworm microcosms under decabromodiphenyl ethane (DBDPE) contamination. MPs altered the food (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!