Ribonucleotide reductases (RNRs) are a family of sophisticated enzymes responsible for the synthesis of the deoxyribonucleotides (dNTPs), the building blocks for DNA synthesis and repair. Although any living cell must contain one RNR activity to continue living, bacteria have the capacity to encode different RNR classes in the same genome, allowing them to adapt to different environments and growing conditions. Pseudomonas aeruginosa is well known for its adaptability and surprisingly encodes all three known RNR classes (Ia, II and III). There must be a complex transcriptional regulation network behind this RNR activity, dictating which RNR class will be expressed according to specific growing conditions. In this work, we aim to uncover the role of the transcriptional regulator NrdR in P. aeruginosa. We demonstrate that NrdR regulates all three RNR classes, being involved in differential control depending on whether the growth conditions are aerobic or anaerobic. Moreover, we also identify for the first time that NrdR is not only involved in controlling RNR expression but also regulates topoisomerase I (topA) transcription. Finally, to obtain the entire picture of NrdR regulon, we performed a global transcriptomic analysis comparing the transcription profile of wild-type and nrdR mutant strains. The results provide many new data about the regulatory network that controls P. aeruginosa RNR transcription, bringing us a step closer to the understanding of this complex system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409342 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0123571 | PLOS |
Proc Natl Acad Sci U S A
November 2024
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139.
Ribonucleotide reductases (RNRs) reduce ribonucleotides to deoxyribonucleotides using radical-based chemistry. For class Ia RNRs, the radical species is stored in a separate subunit (β2) from the subunit housing the active site (α2), requiring the formation of a short-lived α2β2 complex and long-range radical transfer (RT). RT occurs via proton-coupled electron transfer (PCET) over a long distance (~32-Å) and involves the formation and decay of multiple amino acid radical species.
View Article and Find Full Text PDFbioRxiv
October 2024
Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139.
Ribonucleotide reductases (RNRs) reduce ribonucleotides to deoxyribonucleotides using radical-based chemistry. For class Ia RNRs, the radical species is stored in a separate subunit (β2) from the subunit housing the active site (α2), requiring the formation of a short-lived α2β2 complex and long-range radical transfer (RT). RT occurs via proton-coupled electron transfer (PCET) over a long distance (~32-Å) and involves the formation and decay of multiple amino acid radical species.
View Article and Find Full Text PDFBiochemistry
October 2024
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Class Ia ribonucleotide reductases (RNRs) are allosterically regulated by ATP and dATP to maintain the appropriate deoxyribonucleotide levels inside the cell for DNA biosynthesis and repair. RNR activity requires precise positioning of the β and α subunits for the transfer of a catalytically essential radical species. Excess dATP inhibits RNR through the creation of an α-β interface that restricts the ability of β to obtain a position that is capable of radical transfer.
View Article and Find Full Text PDFElife
July 2024
Section for Biochemistry and Structural Biology, Centre for Molecular Protein Science, Department of Chemistry, Lund University, Lund, Sweden.
A small, nucleotide-binding domain, the ATP-cone, is found at the N-terminus of most ribonucleotide reductase (RNR) catalytic subunits. By binding adenosine triphosphate (ATP) or deoxyadenosine triphosphate (dATP) it regulates the enzyme activity of all classes of RNR. Functional and structural work on aerobic RNRs has revealed a plethora of ways in which dATP inhibits activity by inducing oligomerisation and preventing a productive radical transfer from one subunit to the active site in the other.
View Article and Find Full Text PDFBeilstein J Org Chem
April 2024
Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
Linear nitramines (R-N(R')NO; R' = H or alkyl) are toxic compounds, some with environmental relevance, while others are rare natural product nitramines. One of these natural product nitramines is -nitroglycine (NNG), which is produced by some strains and exhibits antibiotic activity towards Gram-negative bacteria. An NNG degrading heme enzyme, called NnlA, has recently been discovered in the genome of strain JS1663 ( NnlA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!