Suppression of transient receptor potential melastatin 4 expression promotes conversion of endothelial cells into fibroblasts via transforming growth factor/activin receptor-like kinase 5 pathway.

J Hypertens

aLaboratorio de Fisiopatología Integrativa, Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Facultad de Medicina, Universidad Andres Bello bInstituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile cLaboratorio de Bionanotecnologia, Universidad Bernardo O'Higgins dLaboratorio de Biología y Fisiopatología Molecular, Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Facultad de Medicina, Universidad Andres Bello eCentro de Investigacion y Tratamiento del Cancer fCentro de Estudios Moleculares de la Celula gMillennium Institute on Immunology and Immunotherapy, Santiago, Republic of Chile.

Published: May 2015

Objective: To study whether transient receptor potential melastatin 4 (TRPM4) participates in endothelial fibrosis and to investigate the underlying mechanism.

Methods: Primary human endothelial cells were used and pharmacological and short interfering RNA-based approaches were used to test the transforming growth factor beta (TGF-β)/activin receptor-like kinase 5 (ALK5) pathway participation and contribution of TRPM7 ion channel.

Results: Suppression of TRPM4 expression leads to decreased endothelial protein expression and increased expression of fibrotic and extracellular matrix markers. Furthermore, TRPM4 downregulation increases intracellular Ca levels as a potential condition for fibrosis. The underlying mechanism of endothelial fibrosis shows that inhibition of TRPM4 expression induces TGF-β1 and TGF-β2 expression, which act through their receptor, ALK5, and the nuclear translocation of the profibrotic transcription factor smad4.

Conclusion: TRPM4 acts to maintain endothelial features and its loss promotes fibrotic conversion via TGF-β production. The regulation of TRPM4 levels could be a target for preserving endothelial function during inflammatory diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1097/HJH.0000000000000496DOI Listing

Publication Analysis

Top Keywords

transient receptor
8
receptor potential
8
potential melastatin
8
endothelial cells
8
transforming growth
8
receptor-like kinase
8
endothelial fibrosis
8
trpm4 expression
8
endothelial
7
expression
6

Similar Publications

Background: Women with endometriosis are more likely to have migraine. The mechanisms underlying this co-morbidity are unknown. Prolactin, a neurohormone secreted and released into circulation from the anterior pituitary, can sensitize sensory neurons from female, but not male, rodents, monkeys and human donors.

View Article and Find Full Text PDF

Physiological accumulation of lipid droplets in newborn liver during breastfeeding is driven by TLR4 ligands.

J Lipid Res

January 2025

Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. Electronic address:

Background: The liver plays a central role in fat storage, but little is known about physiological fat accumulation during early development. Here we investigated a transient surge in hepatic lipid droplets observed in newborn mice immediately after birth.

Methods: We developed a novel model to quantify liver fat content without tissue processing.

View Article and Find Full Text PDF

Calcium-dependent protein kinases CPK3/4/6/11 and 27 respond to osmotic stress and activate SnRK2s in Arabidopsis.

Dev Cell

January 2025

Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Drought and salinity are significant environmental threats that cause hyperosmotic stress in plants, which respond with a transient elevation of cytosolic Ca and activation of Snf1-related protein kinase 2s (SnRK2s) and downstream responses. The exact regulators decoding Ca signals to activate downstream responses remained unclear. Here, we show that the calcium-dependent protein kinases CPK3/4/6/11 and 27 respond to moderate osmotic stress and dehydration to activate SnRK2 phosphorylation in Arabidopsis.

View Article and Find Full Text PDF

Targeting TRPC channels for control of arthritis-induced bone erosion.

Sci Adv

January 2025

Fels Cancer Institute for Personalized Medicine, Department of Cancer & Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.

Arthritis leads to bone erosion due to an imbalance between osteoclast and osteoblast function. Our prior investigations revealed that the Ca-selective ion channel, Orai1, is critical for osteoclast maturation. Here, we show that the small-molecule ELP-004 preferentially inhibits transient receptor potential canonical (TRPC) channels.

View Article and Find Full Text PDF

A nanoparticle-based wireless deep brain stimulation system that reverses Parkinson's disease.

Sci Adv

January 2025

New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.

Deep brain stimulation technology enables the neural modulation with precise spatial control but requires permanent implantation of conduits. Here, we describe a photothermal wireless deep brain stimulation nanosystem capable of eliminating α-synuclein aggregates and restoring degenerated dopamine neurons in the substantia nigra to treat Parkinson's disease. This nanosystem (ATB NPs) consists of gold nanoshell, an antibody against the heat-sensitive transient receptor potential vanilloid family member 1 (TRPV1), and β-synuclein (β-syn) peptides with a near infrared-responsive linker.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!