Brønsted versus Lewis Acid Type Anion Recognition by Arylboronic Acids.

J Org Chem

Facultad de Química, Universidad Nacional Autónoma de México, 04510 México, D.F., México.

Published: May 2015

Interactions between arylboronic acids and a series of anions as tetrabutylammonium salts in DMSO and MeCN were studied by (1)H and (11)B NMR as well as spectrophotometrically. Boronic acids act as Brønsted acid type receptors through hydrogen bonding with B(OH)2 hydroxyl groups toward Cl(-), Br(-), HSO4(-), and AcO(-), but they act as Lewis acid type receptors toward F(-) and H2PO4(-), which form tetrahedral adducts with the B(III) center of boronic acids, although there is also evidence for some contribution of hydrogen bonding with these anions. The Hammett plot for the binding constants of AcO(-) with 3- and 4-substituted phenylboronic acids in DMSO is nonlinear, with a small negative slope for electron-donating and weakly electron-accepting substituents and a large positive slope for strongly electron-accepting substituents. 3-Nitrophenylboronic acid recognizes zwitterions of amino acids in DMSO, and its UV absorption maximum undergoes a significant red shift in the presence of acetate anions, providing a means for sensing anions optically. Arylboronic acids as Brønsted acid type receptors show relatively low sensitivity to solvent polarity and are equally or even more efficient than widely employed proton donors such as ureas or dicarboxamides.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.5b00377DOI Listing

Publication Analysis

Top Keywords

acid type
16
arylboronic acids
12
type receptors
12
lewis acid
8
boronic acids
8
acids brønsted
8
brønsted acid
8
hydrogen bonding
8
acids dmso
8
electron-accepting substituents
8

Similar Publications

A Gram-stain-positive, aerobic, yellow-pigmented, catalase-positive, oxidase-positive, non-motile with no flagella and irregularly rod-shaped, denominated strain YIM 134122, was isolated from a Stereocaulon tomentosum Fr. lichen gathered on Baima Snow Mountain in Diqing Tibetan Autonomous Prefecture, Yunnan Province, China. The novel strain grew at pH 6.

View Article and Find Full Text PDF

Arvimicrobium flavum gen. nov., sp. nov., A Novel Genus in the Family Phyllobacteriaceae Isolated From Forest Soil.

Curr Microbiol

December 2024

Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, 26339, Republic of Korea.

During the study of microbial diversity of forest soil in the Republic of Korea, a yellow pigment-producing, Gram-stain-negative, rod-shaped, motile bacterium was isolated and designated as strain 1W2. This strain grew at temperature of 10-37 °C, at pH of 5.0-9.

View Article and Find Full Text PDF

Nine new structurally diverse filicinic acid-based meroterpenoids (-) with four kinds of carbon skeletons were isolated from the rhizomes of . Their structures, including the absolute configurations, were elucidated by comprehensive analysis of spectroscopic data, quantum chemical calculations, and single-crystal X-ray diffraction. Structurally, compounds - feature an unprecedented 6/6/5/6/6/6 hexacyclic system with a rare oxaspiro[4.

View Article and Find Full Text PDF

Background: Bacterial pathogens frequently encounter host-derived metabolites during their colonization and invasion processes, which can serve as nutrients, antimicrobial agents, or signaling molecules for the pathogens. The essential nutrient choline (Cho) is widely known to be utilized by a diverse range of bacteria and may undergo conversion into the disease-associated metabolite trimethylamine (TMA). However, the impact of choline metabolism on bacterial physiology and virulence remains largely unexplored.

View Article and Find Full Text PDF

Retraction Note: Identification of one critical amino acid that determines a conformational neutralizing epitope in the capsid protein of porcine circovirus type 2.

BMC Microbiol

December 2024

Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang District, Harbin, 150001, China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!