Functional single walled carbon nanotubes (SWCNTs) are assembled onto porous supports by using layer-by-layer (LBL) approaches. Directed nano-assembly of nanotubes is identified as a crucial factor for controlling the combined functions of hybrid-composite membranes, including charge and moisture transport. In both the cases, donor-acceptor interactions are indicated to be responsible for the rearrangement of nanotubes inside the LBL multilayer and their related properties. Aggregation and stratification of the carbon nanotubes along with the availability of selective-site interactions are complementarily investigated by using SEM, Raman and infrared spectroscopy, while high electrical charge and water vapor transfer are achievable, provided that a large number of connections and competitive interactions are allowed. Ohmic behavior is observed for all types of carbon nanotubes, even if better-quality charge transfer pathways are obtained with carboxylated conductive filaments. Likewise, assisted moisture regulation is succeeded when using functional filaments with the capability to establish competitive H-donor-acceptor interactions with water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cp00750j | DOI Listing |
Turk J Chem
November 2024
School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, P.R. China.
The development of ultraviolet (UV) shielding materials is of great importance to protect human health and prevent the degradation of organic matter. However, the synthesis of highly efficient UV shielding polymer nanocomposites is currently limited by the agglomeration of inorganic anti-UV nanoparticles (NPs) within the polymer matrix and the limited absorption spectrum of UV shielding agents. In this study, highly effective manganese doped carbon quantum dots@halloysite nanotube composites (Mn-CDs@HNTs/PAS) were successfully synthesized by loading manganese-doped carbon quantum dots (Mn-CDs) into UV shielding effective halloysite nanotubes (HNTs) via the solvothermal method, followed by polymerization modification (PAS).
View Article and Find Full Text PDFSmall
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China.
Bio-inspired by tactile function of human skin, piezoionic skin sensors recognize strain and stress through converting mechanical stimulus into electrical signals based on ion transfer. However, ion transfer inside sensors is significantly restricted by the lack of hierarchical structure of electrode materials, and then impedes practical application. Here, a durable nanocomposite electrode is developed based on carbon nanotubes and graphene, and integrated into piezoionic sensors for smart wearable applications, such as facial expression and exercise posture recognitions.
View Article and Find Full Text PDFBMC Chem
January 2025
National Organization for Drug Control and Research (NODCAR), P.O.Box 29, Cairo, Egypt.
Tirofiban hydrochloride is used to inhibit platelet aggregation, which has a significant impact on the treatment of congestive heart failure the most common cause of death according to WHO. Therefore, its quantification in pharmaceutical dosage form is critical. In this work, an electrochemical method for the determination of tirofiban HCl in pharmaceutical dosage form was developed and validated.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
To protect against harmful electromagnetic interference (EMI), it is crucial to fabricate composite with high total electromagnetic shielding efficiency (SE); In this study, FeNi-NiFeO-SiO nanoparticles (NPs) were synthesized using one-pot method and decorated on carbon nanotube's (CNT) sidewall. The final product was magnetic-ceramic/conductive (FeNi-NiFeO-SiO/MWCNT) nanocomposite. The EMI shielding characteristic of FeNi-NiFeO-SiO NPs and FeNi-NiFeO-SiO/MWCNT nanocomposite was investigated in the range of X and Ku frequency band.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China. Electronic address:
Integrating liquid metal (LM) with wood fibers for flexible paper electronics is intriguing yet extremely challenging due to poor mechanical performance. Here, we disclose a hemicellulose trapping strategy to achieve exceptional ultrastrong and tough LM-based paper electronics. Holocellulose nanofibrils (HCNFs) with hemicellulose retention of approximately 20 % are found to effectively entrap nanoscale LM within the fibril network, analogous to spider silk capturing small water droplets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!