In this paper, a new configuration of a cold atmospheric pressure plasma jet has been designed and constructed. Poly-methyl-methacrylate was used as a new dielectric in this configuration which in comparison to other dielectrics is inexpensive, more resistant against break, and also more shapeable. Then, the plasma jet parameters such as plume temperature, rotational and vibrational temperatures, power, electrical behavior (voltage and current profile), electron density, and the produced reactive species were characterized. In order to determine the jet temperature and the amount of reactive species, effects of applied voltage, gas flow rate, and distance from the nozzle were studied. The power of the jet was specified using Lissajous curve approach. The plume temperature of the plasma jet was about the room temperature. Optical emission spectroscopy determined the type of reactive species, and also electron density and its corresponding plasma frequency (~6.4 × 10(13) cm(-3) and 4.52 × 10(11) Hz). Because of producing different reactive species, the device can be used in different applications, especially in plasma medicine. Thus, 4T1 cancer cells were treated using this plasma jet. The results showed that this plasma jet has a great potential to kill one of the most aggressive and resistant cancerous cell lines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1116/1.4918806 | DOI Listing |
Materials (Basel)
December 2024
Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia.
This paper presents the initial results of the synthesis of β-GaO luminescent ceramics via plasma gas-thermal spraying synthesis, where low-temperature plasma of an argon and nitrogen mixture was employed. A direct current electric arc generator of high-enthalpy plasma jet with a self-aligning arc length and an expanding channel of an output electrode served as a plasma source. The feedstock material consisted of a polydisperse powder of monocrystalline β-GaO with particle sizes ranging from 5 to 50 μm.
View Article and Find Full Text PDFUltrason Sonochem
December 2024
School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China; Key Laboratory for Agriculture Products Processing of Anhui Province, Hefei, Anhui, China.
The effect of ultrasound and plasma pretreatment on freeze-dried kiwifruit crisps was investigated in this study. Using unpretreated kiwifruit as a control group (CG), the effects of ultrasound (US), plasma-activated water (PAW), ultrasound combined with plasma-activated water (UPAW), plasma-jet (PJ), and ultrasound combined with plasma-jet (UPJ) on the quality of vacuum freeze-dried kiwifruit were investigated. The results showed that all the pretreatments could change the microstructure of the crisps.
View Article and Find Full Text PDFSpace Sci Rev
December 2024
Space Research Institute, Austrian Academy of Sciences, Schmiedlstraße 6, Graz, 8042 Austria.
Plasma flows with enhanced dynamic pressure, known as magnetosheath jets, are often found downstream of collisionless shocks. As they propagate through the magnetosheath, they interact with the surrounding plasma, shaping its properties, and potentially becoming geoeffective upon reaching the magnetopause. In recent years (since 2016), new research has produced vital results that have significantly enhanced our understanding on many aspects of jets.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States.
AC plasmas directly excited within liquid hydrocarbons were investigated for the production of hydrogen and unsaturated C hydrocarbon in a recirculating liquid "jet" flow configuration. Arc discharges were excited at two different frequencies (60 Hz and 17.3 kHz) in C-C hydrocarbons (hexane, cyclohexane, benzene, toluene, and xylene) to produce H, CH, CH, and CH, along with liquid and solid carbon byproducts.
View Article and Find Full Text PDFCells
November 2024
Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050657 Bucharest, Romania.
Due to its antimicrobial, anti-inflammatory and pro-healing properties, the application of cold atmospheric plasma (CAP) has emerged as a new and promising therapeutic strategy in various fields of medicine, including general medicine and dentistry. In this light, the aim of the present study was to investigate the effects of a homemade plasma jet on the cellular behaviour of two important cell types involved in gingivitis, namely gingival fibroblasts (HGF-1 cell line) and macrophages (RAW 264.7 cell line), by the direct application of CAP in different experimental conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!