Japonicone A, which is a natural product isolated from the aerial part of Inula japonica Thunb., has a wide range of clinical applications, including anti-inflammation and anti-oxidation. This study investigated the effects of japonicone A on the growth of non-small cell lung cancer (NSCLC) cell lines. The results showed that japonicone A significantly inhibited the growth of NSCLC cell lines in a dose- and time-dependent manner. This product also blocked cell cycle progression at S phase and induced mitochondrial-related apoptosis by upregulating Bax, cleaved caspase-9, cleaved caspase-3, and cleaved poly(ADP-ribose) polymerase (PARP) protein levels and by downregulating Bcl-2, cyclin D1, CDC25A, and CDK2 protein levels. In vivo, japonicone A suppressed tumor growth via the same mechanism as that observed in vitro. In conclusion, our study is the first to report that japonicone A has an inhibitory effect on the growth of NSCLC cells, indicating that japonicone A administration is a potential therapeutic approach for future NSCLC treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13277-015-3439-6DOI Listing

Publication Analysis

Top Keywords

growth non-small
8
non-small cell
8
cell lung
8
lung cancer
8
nsclc cell
8
cell lines
8
growth nsclc
8
protein levels
8
japonicone
7
growth
5

Similar Publications

Objective: This meta-analysis aims to evaluate the diagnostic accuracy of magnetic resonance imaging (MRI) based radiomic features for predicting epidermal growth factor receptor (EGFR) mutation status in non-small cell lung cancer (NSCLC) patients with brain metastases.

Methods: We systematically searched PubMed, Embase, Cochrane Library, Web of Science, Scopus, Wanfang, and China National Knowledge Infrastructure (CNKI) for studies published up to April 30, 2024. We included those studies that utilized MRI-based radiomic features to detect EGFR mutations in NSCLC patients with brain metastases.

View Article and Find Full Text PDF

Purpose: The primary objective of this study was to explore the prognostic significance of serum cholinesterase (CHE) and metabolic parameters obtained from 18F-fluorodeoxyglucose (FDG) PET/computed tomography (CT) scans in patients with nonsmall cell lung cancer (NSCLC).

Methods: A retrospective observational cohort study was conducted with 202 NSCLC patients. Serum CHE was evaluated alongside metabolic tumor volume (MTV) and total lesion glycolysis (TLG) derived from PET/CT scans.

View Article and Find Full Text PDF

A novel small molecule NJH-13 induces pyroptosis via the Ca driven AKT-FOXO1-GSDME signaling pathway in NSCLC by targeting TRPV5.

J Adv Res

January 2025

Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China. Electronic address:

Introduction: Pyroptosis represents a mode of programmed necrotic cell death (PCD), mediated by members of gasdermin family (GSDMs), such as GSDME. It is emerging as a promising approach for combating cancer. Notably, GSDME is the key modulator for the switch between apoptosis and pyroptosis in cells.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, often linked to overexpression or abnormal activation of the epidermal growth factor receptor (EGFR). The issue of developing resistance to third-generation EGFR kinase inhibitors, such as osimertinib, underscores the urgent need for new therapies to overcome this resistance. Our findings revealed that compound A8 exhibits 88.

View Article and Find Full Text PDF

Background: Tyrosine kinase inhibitors (TKIs) are the first-line therapy for patients with non-small cell lung cancer (NSCLC) with sensitized mutations in the epidermal growth factor receptor (). However, resistance to TKIs is a major clinical issue that affects the survival and prognosis of the patients, with the mechanisms underlying this resistance remaining elusive. Circular RNAs (circRNAs) are a class of single-stranded, covalently closed RNA molecules, which are generated from pre-messenger RNAs (mRNAs) through back splicing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!