Manganese oxide and docetaxel co-loaded fluorescent polymer nanoparticles for dual modal imaging and chemotherapy of breast cancer.

J Control Release

Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada. Electronic address:

Published: July 2015

Multifunctional nanoparticles (NPs) have found important applications in diagnosis, chemotherapy, and image-guided surgery of tumors. In this work, we have developed polymeric theranostic NPs (PTNPs) containing the anticancer drug docetaxel (DTX), a fluorescent dye, and magnetic manganese oxide (MnO) NPs for dual modal imaging and chemotherapy. PTNPs ~150 nm in diameter were synthesized by co-loading hydrophobic DTX and MnO NPs ~5 nm in diameter, into the matrix of a fluorescent dye-labeled amphiphilic polymer. The PTNPs enabled high loading efficiency and sustained in vitro release of DTX. Energy-dependent cellular uptake and extended cytoplasmic retention of the PTNPs in MDA-MB-231 human breast cancer cells were observed by fluorescence microscopy examination. DTX-loaded PTNPs exhibited higher cytotoxicity than free DTX with a 3 to 4.4-fold decrease in drug dose required for 50% cell growth inhibition. The hydrophilic backbone of the amphiphilic polymer improved the fluidity of PTNPs which enhanced the longitudinal relaxivity (r1) of loaded MnO NPs by 2.7-fold with r1=2.4mM(-1)s(-1). Whole body fluorescence imaging (FI) and magnetic resonance imaging (MRI) showed significant accumulation and prolonged retention of PTNPs in orthotopic MDA-MB-231 breast tumors. These results suggest that the new amphiphilic polymer-based PTNP system, able to simultaneously deliver a poorly soluble anticancer drug, enhance MRI contrast, and stain tumor tissue by fluorescence, is a good candidate for cancer theranostic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2015.04.020DOI Listing

Publication Analysis

Top Keywords

mno nps
12
manganese oxide
8
dual modal
8
modal imaging
8
imaging chemotherapy
8
breast cancer
8
anticancer drug
8
amphiphilic polymer
8
retention ptnps
8
ptnps
7

Similar Publications

Mesoporous polydopamine composite nanoparticles for multimodal therapy based on disrupting the redox homeostasis within tumor cells.

J Colloid Interface Sci

December 2024

Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou 310006, China. Electronic address:

Developing multimodal combination therapy strategies to disrupt the redox homeostasis within tumor cells is currently an important approach in cancer treatment. In this study, we designed and prepared multifunctional composite nanoparticles MPDA-PEG@MnO@2-DG (MPPMD NPs) utilizing mesoporous polydopamine nanoparticles (MPDA NPs) as carriers. These carriers were coated with polyethylene glycol (PEG), and manganese dioxide (MnO) and loaded with 2-deoxy-d-glucose (2-DG).

View Article and Find Full Text PDF

Influenza epidemics remain a global public health challenge. Vaccination with nucleic acid-based vaccines, which trigger strong cellular and humoral immune responses, represents a promising approach for preventing virus infection. However, its effectiveness relies on efficient delivery and an immunoadjuvant.

View Article and Find Full Text PDF

Topotactic Transformation in FeO Induces Spontaneous Growth of Compositionally Diverse Nanostructures.

Angew Chem Int Ed Engl

December 2024

Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China.

Topotactic transformation is an emerging strategy for synthesizing materials with exotic functional properties. In this report, instead of producing new crystals with related structures, we exploited the topotactic transformation phenomenon to spontaneously produce compositionally diverse nanostructures on the transforming substrate. The surface of magnetite nanoparticles (FeO NPs) is topotactically transformed into maghemite (γ-FeO).

View Article and Find Full Text PDF

Renal Clearable Chiral Manganese Oxide Supraparticles for In Vivo Detection of Metalloproteinase-9 in Early Cancer Diagnosis.

Adv Mater

December 2024

State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.

In this study, polypeptide TGGGPLGVARGKGGC-induced chiral manganese dioxide supraparticles (MnO SPs) are prepared for sensitive quantification of matrix metalloproteinase-9 (MMP-9) in vitro and in vivo. The results show that L-type manganese dioxide supraparticles (L-MnO SPs) exhibited twice the affinity for the cancer cell membrane receptor CD47 (cluster of differentiation, integrin-associated protein) than D-type manganese dioxide supraparticles (D-MnO SPs) to accumulate at the tumor site after surface modification of the internalizing arginine-glycine-aspartic acid (iRGD) ligand, specifically reacting with the MMP-9, disassembling into ultrasmall nanoparticles (NPs), and efficiently underwent renal clearance. Furthermore, L-MnO facilitates the quantification of MMP-9 in mouse tumor xenografts, as demonstrated by circular dichroism (CD) and magnetic resonance imaging (MRI) within 2 h.

View Article and Find Full Text PDF

Sunlight-driven photocatalytic degradation of industrial dyes using Withania somnifera decorated MnO nanoparticles.

Discov Nano

December 2024

Department of Chemistry, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India.

Article Synopsis
  • The study introduces a quick and eco-friendly method to create manganese oxide (MnO) nanoparticles using Ashwagandha extract, with noticeable color change signaling synthesis.
  • Various analytical techniques confirmed the formation and properties of the nanoparticles, which demonstrated high photocatalytic efficiency in breaking down pollutants when exposed to sunlight.
  • The process is simple, does not require harmful chemicals, and has potential applications in wastewater treatment, promoting the development of sustainable nanomaterials.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!