The protective effect of caffeic acid on global cerebral ischemia-reperfusion injury in rats.

Behav Brain Funct

Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Medical College Rd. No 1, Chongqing, 400016, P. R. China.

Published: April 2015

AI Article Synopsis

  • Ischemic stroke is a major global health issue caused by reduced blood flow to the brain, leading to serious damage and disability.
  • Recent research indicates that 5-Lipoxygenase (5-LO) inhibitors, like caffeic acid derived from plants, may protect against ischemic damage in animal studies.
  • In an experiment with rats, caffeic acid improved memory performance, reduced neuron injury in the hippocampus, and positively influenced oxidative stress markers compared to untreated ischemia/reperfusion groups.

Article Abstract

Ischemic stroke is a major cause of death and disability all over the world. Ischemic stroke results from a temporary or permanent reduction of cerebral blood flow that leads to functional and structural damage in different brain regions. Despite decades of intense research, the beneficial treatment of stroke remains limited. In light of this, the search for effective means ameliorating cerebral ischemia-reperfusion injury (CIRI) is one of the major problems of experimental medicine and biology. Recently, the 5-Lipoxygenase (5-LO, a key enzyme metabolizing arachidonic acid to produce leukotrienes) inhibitors have been showed to protect brain against ischemic damage in animal model of cerebral ischemia. Caffeic acid, an inhibitor of 5-LO, is a phenolic compound widely distributed in medicinal plants. The aim of this study was to investigate the effect of caffeic acid on global cerebral ischemia-reperfusion injury in rats. The study was carried out on 45 rats that were randomly divided into five groups: the sham group (n = 9), I/R non-treated group (n = 9), I/R-caffeic acid group (10 mg · kg(-1)) (n = 9), I/R-caffeic acid group (30 mg · kg(-1)) (n = 9) and I/R-caffeic acid group (50 mg · kg(-1)) (n = 9). Global cerebral ischemia was induced by bilateral carotid artery occlusion for 20 min followed by reperfusion. Spatial learning and memory was evaluated using Morris water maze. Histopathological changes of hippocampus neurons was observed using HE staining. Superoxide dismutase (SOD, the antioxidant enzyme) activities and malondialdehyde (MDA, an oxidative stress biomarker) contents were detected. NF-κBp65 expression was detected by the methods of immunohistochemistry. Caffeic acid markedly reduced the escape latency, relieved hippocampal neurons injury and increased neuron count compared with those of I/R non-treated rat. NF-κBp65 expression and MDA content decreased significantly, and SOD activities increased significantly in hippocampus. Compared with sham group, 5-LO expression increase significantly in I/R non-treated group rat, and caffeic acid markedly reduced 5-LO expression. The results of the study suggest that caffeic acid has a significant protective effect on global cerebral ischemia-reperfusion injury in rats. The neuroprotective effects is likely to be mediated through the inhibition of 5-LO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407787PMC
http://dx.doi.org/10.1186/s12993-015-0064-xDOI Listing

Publication Analysis

Top Keywords

caffeic acid
24
global cerebral
16
cerebral ischemia-reperfusion
16
ischemia-reperfusion injury
16
injury rats
12
i/r non-treated
12
n = 9 i/r-caffeic
12
i/r-caffeic acid
12
acid group
12
acid
10

Similar Publications

Introduction: NF-κB plays a pivotal role in the progression of cancers, including myosarcomas such as fibrosarcoma. Plants possess considerable potential for the provision of chemotherapeutic effects against cancer. The present study assessed, among others, the cytotoxicity, migration capacity and DNA damage induced by several natural compounds (berberine, curcumin, biochanin A, cucurbitacin E (CurE) and phenethyl caffeic acid (CAPE)) in cancer cells (WEHI-164) and normal muscle cells (L6).

View Article and Find Full Text PDF

Hydroxycinnamic acid derivatives are a class of phenolic acid compounds, including sinapic acid, ferulic acid, and caffeic acid, which are widely found in plants. This experiment was conducted to study the effects of hydroxycinnamic acid derivatives (sinapic acid, ferulic acid, and caffeic acid) on the growth performance, muscle physical parameters, and intestinal morphology of tilapia. A total of 320 tilapia fingerlings (9.

View Article and Find Full Text PDF

Unlabelled: This research aimed to assess the biological characteristics of both submerged culture mycelium and artificial basidioma of NTH-PL4. The extraction yield from the basidioma surpassed that of the mycelium. The use of hot water extract resulted in the highest total carbohydrate content, predominantly found in the basidioma.

View Article and Find Full Text PDF

Sorghum () is a gluten-free supercrop with a high content of phenolic compounds, along with anti-nutrient factors such as tannin that limit its use in food. In this study, we conducted solid-state fermentation for sorghum with to reduce the tannin content and value-added sorghum by enhancing biological properties. The results showed that fermented sorghum had 1.

View Article and Find Full Text PDF

The invasion and metastasis of cancer cells transform localized cancers into systemic and life-threatening diseases, posing one of the most significant challenges in cancer treatment. This study tested the hypothesis that combined treatment with Caffeic acid (CA) and metformin (MTF) could inhibit or reduce effective signaling pathways involved in the proliferation, survival, and metastasis of MCF-7 breast cancer cells. Anti-proliferation analysis determined the IC50 values for MTF (4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!