We confirmed strong association of rs78378222:A>C (per allele odds ratio [OR] = 3.14; P = 6.48 × 10(-11) ), a germline rare single-nucleotide polymorphism (SNP) in TP53, via imputation of a genome-wide association study of glioma (1,856 cases and 4,955 controls). We subsequently performed integrative analyses on the Cancer Genome Atlas (TCGA) data for GBM (glioblastoma multiforme) and LUAD (lung adenocarcinoma). Based on SNP data, we imputed genotypes for rs78378222 and selected individuals carrying rare risk allele (C). Using RNA sequencing data, we observed aberrant transcripts with ∼3 kb longer than normal for those individuals. Using exome sequencing data, we further showed that loss of haplotype carrying common protective allele (A) occurred somatically in GBM but not in LUAD. Our bioinformatic analysis suggests rare risk allele (C) disrupts mRNA termination, and an allelic loss of a genomic region harboring common protective allele (A) occurs during tumor initiation or progression for glioma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4750473PMC
http://dx.doi.org/10.1002/humu.22799DOI Listing

Publication Analysis

Top Keywords

tcga data
8
rare risk
8
risk allele
8
sequencing data
8
common protective
8
protective allele
8
data
5
allele
5
confirmation germline
4
germline glioma
4

Similar Publications

Purpose: We aimed to identify the transcriptomic signatures of soft tissue sarcoma (STS) related to radioresistance and establish a model to predict radioresistance.

Materials And Methods: Nine STS cell lines were cultured. Adenosine triphosphate-based viability was determined 5 days after irradiation with 8 Gy of X-rays in a single fraction.

View Article and Find Full Text PDF

Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.

View Article and Find Full Text PDF

Background: The role of Zona pellucida glycoprotein 3 (ZP3) is unclear in pancreatic adenocarcinoma (PAAD).

Objective: This study aimed to explore the role of ZP3 in PAAD.

Methods: A comparative analysis of ZP3 gene expression was performed to discern differences between various types of cancer and PAAD, leveraging data sourced from The Cancer Genome Atlas (TCGA).

View Article and Find Full Text PDF

Background: Plasma membrane tension-related genes (MTRGs) are known to play a crucial role in tumor progression by influencing cell migration and adhesion. However, their specific mechanisms in bladder cancer (BLCA) remain unclear.

Methods: Transcriptomic, clinical and mutation data from BLCA patients were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases.

View Article and Find Full Text PDF

Background: The most common malignant type of kidney cancer is clear cell renal cell carcinoma (ccRCC). The expression levels of hyaluronan-mediated motility receptor (HMMR) in many tumor types are significantly elevated. HMMR is closely associated with tumor-related progression, treatment resistance, and poor prognosis, and has yet to be fully investigated in terms of its expression patterns and molecular mechanisms of action in ccRCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!