Background: Visceral leishmaniasis (VL) is a neglected tropical disease, which is strongly associated with poverty. VL caused by Leishmania donovani and transmitted by Phlebotomus orientalis is endemic in various remote areas of north and north-west Ethiopia. The present study was designed to determine the sand fly fauna and bionomics of P. orientalis in the VL endemic focus of Tahtay Adiyabo district.

Methods: Sand flies were collected using CDC light traps (n = 602), sticky traps (n = 9,350) and indoor pyrethrum spray catches (n = 578 house visits) from indoor, peri-domestic and agricultural field habitats between May 2011 to April 2012. All sand fly specimens collected were identified to species level and counted.

Results: In total, 100,772 sand fly specimens, belonging to 25 sand fly species (nine Phlebotomus and sixteen Sergentomyia) were collected and identified. S. africana and P. orientalis made up 59.1% and 23.5% of the collected sand flies, respectively. As it could be determined from the proportion of collections from outdoor (peri-domestic and agricultural fields) and indoor locations, P. orientalis appears to exhibit increased exophilic behavior. The outdoor to indoor index was 79:1 on m(2) of sticky traps. Mean density of P. orientalis caught was significantly higher on horizontally placed sticky traps (mean = 60 ± 14.56/m(2)/night) than vertically deployed sticky traps (12 ± 3.57/m(2)/night). The highest abundance of P. orientalis occurred between March and April. Through July to September, there was a sharp decline in abundance of P. orientalis population. Regarding climatic variables, P. orientalis density in light traps and on sticky traps showed a significant positive and negative association with temperature and relative humidity, respectively. However, non-significant negative correlation was observed with rainfall pattern.

Conclusions: Overall, P. orientalis was found to be the most abundant Phlebotomus species, showing marked seasonal abundance that mainly peaks during the dry season (March to April). Likewise, the people in the area usually sleep in compounds during these months that potentially expose them to a high risk of peri-domestic VL transmission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4438477PMC
http://dx.doi.org/10.1186/s13071-015-0849-7DOI Listing

Publication Analysis

Top Keywords

sticky traps
20
sand fly
16
sand flies
12
orientalis
10
phlebotomus orientalis
8
endemic focus
8
visceral leishmaniasis
8
tahtay adiyabo
8
orientalis endemic
8
light traps
8

Similar Publications

Dengue's climate conundrum: how vegetation and temperature shape mosquito populations and disease outbreaks.

BMC Public Health

January 2025

Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand.

Introduction: Dengue, a prevalent mosquito-borne viral disease in tropical regions, is influenced by environmental factors such as rainfall, temperature, and urbanization. This study aims to assess the effects of microclimate, vegetation, and Aedes species distribution on dengue transmission in distinct hotspot and non-hotspot locations.

Methods: This cohort study was conducted in two sites within Selangor, Malaysia: a recurrent dengue hotspot and a non-dengue hotspot.

View Article and Find Full Text PDF

is a vector of , the causative agent of cutaneous leishmaniasis. This study assessed the abundance and distribution of in different habitats and human houses situated at varying distances from hyrax (reservoir host) dwellings, in Wolaita Zone, southern Ethiopia. Sandflies were collected from January 2020 to December 2021 using CDC light traps, sticky paper traps, and locally made emergence traps.

View Article and Find Full Text PDF

Flavescence dorée (FD) poses a significant threat to grapevine health, with the American grapevine leafhopper, , serving as the primary vector. FD is responsible for yield losses and high production costs due to mandatory insecticide treatments, infected plant uprooting, and replanting. Another potential FD vector is the mosaic leafhopper, , commonly found in agroecosystems.

View Article and Find Full Text PDF

Molecular detection of DNA in wild-caught sand flies, and spp. in northern Iran.

Parasite Epidemiol Control

November 2024

Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Toxoplasmosis Research Center, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran.

Leishmaniasis is currently considered a major health problem in Iran, posing an increasing threat to society's development in various dimensions. This study aimed to detect infection in wild-caught sand flies in Sari City, northern Iran. Sand flies were collected using sticky traps, and DNA was identified using polymerase chain reaction (PCR) targeting the ITS2-rDNA region, followed by restriction fragment length polymorphism (RFLP) analysis.

View Article and Find Full Text PDF

Introduction: Effective monitoring of insect-pests is vital for safeguarding agricultural yields and ensuring food security. Recent advances in computer vision and machine learning have opened up significant possibilities of automated persistent monitoring of insect-pests through reliable detection and counting of insects in setups such as yellow sticky traps. However, this task is fraught with complexities, encompassing challenges such as, laborious dataset annotation, recognizing small insect-pests in low-resolution or distant images, and the intricate variations across insect-pests life stages and species classes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!