Insights into pH-induced metabolic switch by flux balance analysis.

Biotechnol Prog

Dept. of Chemistry and Applied Biosciences, Inst. for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland.

Published: January 2016

Lactate accumulation in mammalian cell culture is known to impede cellular growth and productivity. The control of lactate formation and consumption in a hybridoma cell line was achieved by pH alteration during the early exponential growth phase. In particular, lactate consumption was induced even at high glucose concentrations at pH 6.8, whereas highly increased production of lactate was obtained at pH 7.8. Consequently, constraint-based metabolic flux analysis was used to examine pH-induced metabolic states in the same growth state. We demonstrated that lactate influx at pH 6.8 led cells to maintain high fluxes in the TCA cycle and malate-aspartate shuttle resulting in a high ATP production rate. In contrast, under increased pH conditions, less ATP was generated and different ATP sources were utilized. Gene expression analysis led to the conclusion that lactate formation at high pH was enabled by gluconeogenic pathways in addition to facilitated glucose uptake. The obtained results provide new insights into the influence of pH on cellular metabolism, and are of importance when considering pH heterogeneities typically present in large scale industrial bioreactors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/btpr.2043DOI Listing

Publication Analysis

Top Keywords

ph-induced metabolic
8
lactate formation
8
lactate
6
insights ph-induced
4
metabolic switch
4
switch flux
4
flux balance
4
balance analysis
4
analysis lactate
4
lactate accumulation
4

Similar Publications

Article Synopsis
  • Tc toxins are harmful proteins from bacteria that can pierce cell membranes, allowing them to introduce toxic enzymes into cells.
  • Their transition from an inactive to an active state has been studied, revealing it takes about 30 hours and involves multiple steps and intermediates.
  • Factors like higher pH and the presence of certain receptors speed up this process, with the actual ejection of the channel happening in under 60 milliseconds, highlighting potential uses for these toxins in medicine and pest control.
View Article and Find Full Text PDF

In vitro and in vivo analysis of rumen fermentation after supplementary niacin in high concentrated fed cattle.

Trop Anim Health Prod

December 2024

Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, 330045, China.

Rumen acidosis is a common nutritional metabolic disease in ruminants, and the developing of feed additives to prevent this disorder has great application prospect. This study was conducted to investigate the effects of dietary niacin supplementation with different concentrate to roughage ratio on rumen fermentation evaluated by simulated rumen fermentation in vitro and in vivo. The cattle fed with basal feed (dietary concentrate-to-forage ratio was 5: 5) and high concentrate feed (dietary concentrate-to-forage ratio was 8: 2) were defined as Control stage and HC stage, respectively.

View Article and Find Full Text PDF

Microbial carbon (C) use efficiency (CUE) describes the proportion of organic C used by microorganisms for anabolic processes, which increases with soil organic C (SOC) content on a global scale. However, it is unclear whether a similar relationship exists during natural vegetation restoration in terrestrial ecosystems. Here, we investigated the patterns of CUE along a 160-year vegetation restoration chronosequence (from farmland to climax forest) estimated by stoichiometric modeling; additionally, we examined the relationship between CUE and SOC content and combined these results with a meta-analysis.

View Article and Find Full Text PDF

The Key Enzymes of Carbon Metabolism and the Glutathione Antioxidant System Protect Yeast Against pH-Induced Stress.

J Fungi (Basel)

October 2024

Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl., 1, 394000 Voronezh, Russia.

In this study, we first thoroughly assayed the response of the key enzymes of energy metabolism and the antioxidant system in yeast at extreme pH. The activity of the tricarboxylic acid cycle enzymes, namely NAD-dependent isocitrate dehydrogenase, aconitate hydratase, NAD-dependent malate dehydrogenase, and fumarate hydratase, NADPH-producing enzymes of glucose-6-P dehydrogenase and NADP-dependent isocitrate dehydrogenase, and the enzymes of the glutathione system was assessed. All the enzymes that were tested showed a significant induction contrary to some decrease in the aconitate hydratase activity with acidic and alkaline stress.

View Article and Find Full Text PDF

Long-Term Adverse Effects of Perinatal Hypoxia on the Adult Pulmonary Circulation Vary Between Males and Females in a Murine Model.

Physiol Res

November 2024

Neonatal Res Lab, Dept Woman-Mother-Child, Lausanne Univ Hosp and Univ Lausanne, Lausanne, Switzerland.

Adverse events during the perinatal period are associated with an increased risk to develop cardiometabolic diseases later in life. We established a murine model to study long-term effects of perinatal hypoxia (PH) on the pulmonary circulation. We previously demonstrated that PH led to an impaired regulation of pulmonary vascular tone in adulthood, linked to alterations in K+ channels in males and in the nitric oxide (NO)/cyclic guanosine monophosphate pathway in females.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!