Lactate accumulation in mammalian cell culture is known to impede cellular growth and productivity. The control of lactate formation and consumption in a hybridoma cell line was achieved by pH alteration during the early exponential growth phase. In particular, lactate consumption was induced even at high glucose concentrations at pH 6.8, whereas highly increased production of lactate was obtained at pH 7.8. Consequently, constraint-based metabolic flux analysis was used to examine pH-induced metabolic states in the same growth state. We demonstrated that lactate influx at pH 6.8 led cells to maintain high fluxes in the TCA cycle and malate-aspartate shuttle resulting in a high ATP production rate. In contrast, under increased pH conditions, less ATP was generated and different ATP sources were utilized. Gene expression analysis led to the conclusion that lactate formation at high pH was enabled by gluconeogenic pathways in addition to facilitated glucose uptake. The obtained results provide new insights into the influence of pH on cellular metabolism, and are of importance when considering pH heterogeneities typically present in large scale industrial bioreactors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/btpr.2043 | DOI Listing |
Sci Adv
January 2025
Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany.
Trop Anim Health Prod
December 2024
Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, 330045, China.
Rumen acidosis is a common nutritional metabolic disease in ruminants, and the developing of feed additives to prevent this disorder has great application prospect. This study was conducted to investigate the effects of dietary niacin supplementation with different concentrate to roughage ratio on rumen fermentation evaluated by simulated rumen fermentation in vitro and in vivo. The cattle fed with basal feed (dietary concentrate-to-forage ratio was 5: 5) and high concentrate feed (dietary concentrate-to-forage ratio was 8: 2) were defined as Control stage and HC stage, respectively.
View Article and Find Full Text PDFGlob Chang Biol
December 2024
Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany.
Microbial carbon (C) use efficiency (CUE) describes the proportion of organic C used by microorganisms for anabolic processes, which increases with soil organic C (SOC) content on a global scale. However, it is unclear whether a similar relationship exists during natural vegetation restoration in terrestrial ecosystems. Here, we investigated the patterns of CUE along a 160-year vegetation restoration chronosequence (from farmland to climax forest) estimated by stoichiometric modeling; additionally, we examined the relationship between CUE and SOC content and combined these results with a meta-analysis.
View Article and Find Full Text PDFJ Fungi (Basel)
October 2024
Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl., 1, 394000 Voronezh, Russia.
In this study, we first thoroughly assayed the response of the key enzymes of energy metabolism and the antioxidant system in yeast at extreme pH. The activity of the tricarboxylic acid cycle enzymes, namely NAD-dependent isocitrate dehydrogenase, aconitate hydratase, NAD-dependent malate dehydrogenase, and fumarate hydratase, NADPH-producing enzymes of glucose-6-P dehydrogenase and NADP-dependent isocitrate dehydrogenase, and the enzymes of the glutathione system was assessed. All the enzymes that were tested showed a significant induction contrary to some decrease in the aconitate hydratase activity with acidic and alkaline stress.
View Article and Find Full Text PDFPhysiol Res
November 2024
Neonatal Res Lab, Dept Woman-Mother-Child, Lausanne Univ Hosp and Univ Lausanne, Lausanne, Switzerland.
Adverse events during the perinatal period are associated with an increased risk to develop cardiometabolic diseases later in life. We established a murine model to study long-term effects of perinatal hypoxia (PH) on the pulmonary circulation. We previously demonstrated that PH led to an impaired regulation of pulmonary vascular tone in adulthood, linked to alterations in K+ channels in males and in the nitric oxide (NO)/cyclic guanosine monophosphate pathway in females.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!