Telomerase, the enzyme that maintains telomeres, preferentially lengthens short telomeres. The S. cerevisiae Pif1 DNA helicase inhibits both telomerase-mediated telomere lengthening and de novo telomere addition at double strand breaks (DSB). Here, we report that the association of the telomerase subunits Est2 and Est1 at a DSB was increased in the absence of Pif1, as it is at telomeres, suggesting that Pif1 suppresses de novo telomere addition by removing telomerase from the break. To determine how the absence of Pif1 results in telomere lengthening, we used the single telomere extension assay (STEX), which monitors lengthening of individual telomeres in a single cell cycle. In the absence of Pif1, telomerase added significantly more telomeric DNA, an average of 72 nucleotides per telomere compared to the 45 nucleotides in wild type cells, and the fraction of telomeres lengthened increased almost four-fold. Using an inducible short telomere assay, Est2 and Est1 no longer bound preferentially to a short telomere in pif1 mutant cells while binding of Yku80, a telomere structural protein, was unaffected by the status of the PIF1 locus. Two experiments demonstrate that Pif1 binding is affected by telomere length: Pif1 (but not Yku80) -associated telomeres were 70 bps longer than bulk telomeres, and in the inducible short telomere assay, Pif1 bound better to wild type length telomeres than to short telomeres. Thus, preferential lengthening of short yeast telomeres is achieved in part by targeting the negative regulator Pif1 to long telomeres.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4408051 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1005186 | DOI Listing |
J Biochem Mol Toxicol
December 2024
Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India.
Ucc1, an F-box motif-containing protein of Saccharomyces cerevisiae encoded by UCC1 regulates energy metabolism through proteasomal degradation of citrate synthase Cit2 and inactivation of the glyoxylate cycle when glucose is present as the main carbon source in the growth medium. Rrm3, a Pif1 family DNA helicase, encoded by RRM3 regulates the movement of the replication forks during the DNA replication process. Here in this study, we present evidence of binary genetic interaction between both the genes, UCC1 and RRM3, that determine the growth rate, cell morphology, cell size, apoptosis, and stress response.
View Article and Find Full Text PDFInt J Biol Macromol
October 2023
Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266100, China. Electronic address:
PLoS Genet
October 2024
Department of Cell & Systems Biology, University of Toronto, Toronto, Canada.
Plants monitor multiple environmental cues, such as light and temperature, to ensure they germinate at the right time and place. Some specialist plants, like ephemeral fire-following weeds and root parasitic plants, germinate primarily in response to small molecules found in specific environments. Although these species come from distinct clades, they use the same HYPOSENSITIVE TO LIGHT/KARRIKIN INSENSITIVE 2 (HTL/KAI2) signaling pathway, to perceive different small molecules suggesting convergent evolution on this pathway.
View Article and Find Full Text PDFNucleic Acids Res
November 2024
Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Beech Hill Rd., Sheffield S10 2RX, United Kingdom.
PIF1 is a conserved helicase and G4 DNA binding and unwinding enzyme, with roles in genome stability. Human PIF1 (hPIF1) is poorly understood, but its functions can become critical for tumour cell survival during oncogene-driven replication stress. Here we report the discovery, via an X-ray crystallographic fragment screen (XChem), of hPIF1 DNA binding and unwinding inhibitors.
View Article and Find Full Text PDFNat Commun
October 2024
Department of Molecular and Cell Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!