Oxidants induce a corticosteroid-insensitive phosphorylation of histone 3 at serine 10 in monocytes.

PLoS One

Section of Airways Disease, National Heart & Lung Institute, Imperial College, London, United Kingdom; NIHR Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom.

Published: January 2016

Oxidative stress enhances inflammation and reduces the effectiveness of corticosteroids, but the inflammatory signalling pathways induced by oxidants remain ill-defined. Phosphorylation of histone 3 at serine 10 (H3-Pser10) marks out a subset of inflammatory genes for transcription, several of which are induced in oxidant-associated inflammation. However, the influence of oxidants or of corticosteroids on this modification remains unknown. We assessed the regulation of H3-Pser10 by oxidants and lipopolysaccharide (LPS) in human blood monocytes and lung macrophages and the effectiveness of its abolition in controlling inflammatory gene expression in cells from asthmatic subjects compared to corticosteroids alone. Both oxidants and LPS promoted the induction of H3-Pser10 which was unaffected by corticosteroids. The induction of H3-Pser10 was mediated through p38α mitogen-activated protein kinase (MAPK) and IκB kinase 2 (IKK-2) signalling. Consequently, inhibitors of p38α MAPK or IKK-2 used in combination with dexamethasone were more effective at controlling inflammatory gene expression from monocytes and lung macrophages from asthmatic patients than the corticosteroid alone. Therefore, reduction of H3-Pser10 by inhibition of p38α MAPK or of IKK-2 may provide greater anti-inflammatory control than corticosteroids alone in oxidant-associated inflammation such as severe asthma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407905PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0124961PLOS

Publication Analysis

Top Keywords

phosphorylation histone
8
histone serine
8
oxidant-associated inflammation
8
monocytes lung
8
lung macrophages
8
controlling inflammatory
8
inflammatory gene
8
gene expression
8
induction h3-pser10
8
p38α mapk
8

Similar Publications

Enhanced mitochondrial function and delivery from adipose-derived stem cell spheres via the EZH2-H3K27me3-PPARγ pathway for advanced therapy.

Stem Cell Res Ther

March 2025

Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 70101, Taiwan.

Background: Microenvironmental alterations induce significant genetic and epigenetic changes in stem cells. Mitochondria, essential for regenerative capabilities, provide the necessary energy for stem cell function. However, the specific roles of histone modifications and mitochondrial dynamics in human adipose-derived stem cells (ASCs) during morphological transformations remain poorly understood.

View Article and Find Full Text PDF

Neuropathic pain, a debilitating nerve injury-induced condition, remains a significant clinical challenge. This study evaluates the effect of histone deacetylase 6 (HDAC6) inhibition in a spared nerve injury (SNI) mouse model. Systemic administration of the selective HDAC6 inhibitor ACY-1215 (20 mg/kg/day, 14 days), alleviated SNI-induced pain in mice of both sexes.

View Article and Find Full Text PDF

The DNA damage repair kinase ATM is phosphorylated by the NF-κB pathway kinase IKKα, resulting in enhanced DNA damage repair through the nonhomologous end-joining pathway. Thus, inhibition of IKKα enhances the efficacy of cancer therapy based on inducing DNA damage. Here, we found a role for the IKK regulatory subunit NEMO in DNA damage repair mediated by ATM and IKKα.

View Article and Find Full Text PDF

NONO interacts with nuclear PKM2 and directs histone H3 phosphorylation to promote triple-negative breast cancer metastasis.

J Exp Clin Cancer Res

March 2025

The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, 210023, China.

Background: Emerging evidence has revealed that PKM2 has oncogenic functions independent of its canonical pyruvate kinase activity, serving as a protein kinase that regulates gene expression. However, the mechanism by which PKM2, as a histone kinase, regulates the transcription of genes involved in triple-negative breast cancer (TNBC) metastasis remains poorly understood.

Methods: We integrated cellular analysis, including cell viability, proliferation, colony formation, and migration assays; biochemical assays, including protein interaction studies and ChIP; clinical sample analysis; RNA-Seq and CUT&Tag data; and xenograft or mammary-specific gene knockout mouse models, to investigate the epigenetic modulation of TNBC metastasis via NONO-dependent interactions with nuclear PKM2.

View Article and Find Full Text PDF

Background: Radiotherapy is one of the main treatments for non-small cell lung cancer (NSCLC), and radiosensitivity is a determinant of its efficacy. Therefore, enhancing the radiosensitivity is of great significance to improve the clinical efficacy of non-small cell lung cancer (NSCLC).

Purpose: This study intended to investigate the radiosensitisation effect and mechanism of Guiqi Baizhu decoction (GQBZD) on non-small cell lung cancer (NSCLC) and the role of hypoxia-inducible factor-1 alpha (HIF-1α)/DNA-dependent protein kinase catalytic subunit (DNA-PKcs) axis-mediated DNA non-homologous end joining (NHEJ) repair in NSCLC radiotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!