Development of the Plutonium-DTPA Biokinetic Model.

Health Phys

*CH2M-WG Idaho, LLC, Radiological Control, 1580 Sawtelle Street, Idaho Falls, ID 83402; †Department of Nuclear Engineering and Health Physics, Idaho State University, 921 South 8th Avenue, Stop 8060, Pocatello, ID 83209-8060.

Published: June 2015

Estimating radionuclide intakes from bioassays following chelation treatment presents a challenge to the dosimetrist due to the observed excretion enhancement of the particular radionuclide of concern where no standard biokinetic model exists. This document provides a Pu-DTPA biokinetic model that may be used for making such determination for plutonium intakes. The Pu-DTPA biokinetic model is intended to supplement the standard recommended biokinetic models. The model was used to evaluate several chelation strategies that resulted in providing recommendations for effective treatment. These recommendations supported early treatment for soluble particle inhalations and an initial 3-day series of DTPA treatments for wounds. Several late chelation strategies were also compared where reduced treatment frequencies proved to be as effective as multiple treatments. The Pu-DTPA biokinetic model can be used to assist in estimating initial intakes of transuranic radionuclides and for studying the effects of different treatment strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1097/HP.0000000000000283DOI Listing

Publication Analysis

Top Keywords

biokinetic model
20
pu-dtpa biokinetic
12
chelation strategies
8
biokinetic
6
model
6
treatment
5
development plutonium-dtpa
4
plutonium-dtpa biokinetic
4
model estimating
4
estimating radionuclide
4

Similar Publications

Evidence for low bioavailability of dietary nanoparticulate cerium in a freshwater food chain.

Aquat Toxicol

December 2024

ANSTO, Nuclear Science and Technology Division, Lucas Heights, NSW 2234, Australia.

Radioactive Ce in ionic (I-Ce), nano (N-Ce, 11 ± 9 nm mean primary particle size ± standard deviation) and micron-sized (M-Ce, 530 ± 440 µm) forms associated with natural and artificial diets in natural river water and synthetic freshwater were used to measure the real-time biokinetics of dietary Ce assimilation in a freshwater food chain. The model food chain consisted of microalgae (Raphidocelis subcapitata), snails (Potamopyrgus antipodarum) and prawns (Macrobrachium australiense). Pulse-chase experiments showed that 91-100 % of all forms of cerium associated with all diets and water types were eliminated from the digestive system of the snail and prawn within 24 h, with no detectable cerium assimilation.

View Article and Find Full Text PDF

Inhibition of Neural Crest Cell Migration by Strobilurin Fungicides and Other Mitochondrial Toxicants.

Cells

December 2024

In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany.

Cell-based test methods with a phenotypic readout are frequently used for toxicity screening. However, guidance on how to validate the hits and how to integrate this information with other data for purposes of risk assessment is missing. We present here such a procedure and exemplify it with a case study on neural crest cell (NCC)-based developmental toxicity of picoxystrobin.

View Article and Find Full Text PDF

Analysis of biokinetic parameters reveals patterns in mercury accumulation across aquatic species.

Sci Total Environ

January 2025

Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, TN, United States of America.

Article Synopsis
  • Mercury is a toxic substance that accumulates in fish, particularly in its organic form, methylmercury (MeHg), which poses risks to human health through contaminated fish consumption.
  • Understanding how mercury accumulates in aquatic species requires analyzing several biokinetic parameters, including uptake rate, assimilation efficiency, and efflux rate, which were studied across 38 fish and 34 aquatic invertebrate species, yielding 502 total data points.
  • The study found that the form of mercury and various environmental factors like water type and organism weight significantly influenced these parameters, highlighting differences between fish and invertebrates, and challenging previous assumptions about the impact of environmental conditions on mercury accumulation in aquatic ecosystems.
View Article and Find Full Text PDF

Since 1968, the United States Transuranium and Uranium Registries (USTUR) has studied the biokinetics and tissue dosimetry of uranium and transuranium elements in nuclear workers. As part of the USTUR collaboration with the Million Person Study (MPS) of Low-Dose Health Effects, radiation dose to different parts of the human heart is being estimated for workers with documented intakes of 239Pu or 226Ra. The study may be expanded for workers with intakes of 238U and other radionuclides.

View Article and Find Full Text PDF

A new biokinetic model for iodine in dairy cows was developed utilizing data from a 4 × 4 factorial feeding experiment with rumen-cannulated cows that were fed rapeseed cake containing substances known to influence iodine metabolism, and soybean meal without such effects. I was administered both intravenously and intra-ruminally to document metabolism pathways. The new model included compartments such as saliva and thyroid gland, often ignored in other models, and in contrast to previously available biokinetic models, it fitted well to our experimental data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!