Amyotrophic lateral sclerosis (ALS) is a devastating fatal motor neuron disease, for which there is currently no cure or effective treatment. In this disease, local neuroinflammation develops along the disease course and contributes to its rapid progression. In several models of CNS pathologies, circulating immune cells were shown to display an indispensable role in the resolution of the neuroinflammatory response. The recruitment of such cells to the CNS involves activation of the choroid plexus (CP) of the brain for leukocyte trafficking, through a mechanism that requires IFN-γ signaling. Here, we found that in the mutant SOD1(G93A) (mSOD1) mouse model of ALS, the CP does not support leukocyte trafficking during disease progression, due to a local reduction in IFN-γ levels. Therapeutic immunization of mSOD1 mice with a myelin-derived peptide led to CP activation, and was followed by the accumulation of immunoregulatory cells, including IL-10-producing monocyte-derived macrophages and Foxp3(+) regulatory T cells, and elevation of the neurotrophic factors IGF-1 and GDNF in the diseased spinal cord parenchyma. The immunization resulted in the attenuation of disease progression and an increased life expectancy of the mSOD1 mice. Collectively, our results demonstrate that recruitment of immunoregulatory cells to the diseased spinal cord in ALS, needed for fighting off the pathology, can be enhanced by transiently boosting peripheral immunity to myelin antigens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6605216PMC
http://dx.doi.org/10.1523/JNEUROSCI.3644-14.2015DOI Listing

Publication Analysis

Top Keywords

immunoregulatory cells
12
disease progression
12
choroid plexus
8
recruitment immunoregulatory
8
cells cns
8
mouse model
8
model als
8
leukocyte trafficking
8
msod1 mice
8
diseased spinal
8

Similar Publications

NIM-1324 is an oral investigational new drug for autoimmune disease that targets the Lanthionine Synthetase C-like 2 (LANCL2) pathway. Through activation of LANCL2, NIM-1324 modulates CD4+ T cells to bias signaling and cellular metabolism toward increased immunoregulatory function while providing similar support to phagocytes. In primary human immune cells, NIM-1324 reduces type I interferon and inflammatory cytokine (IL-6, IL-8) production.

View Article and Find Full Text PDF

Glioblastomas (GBM) are malignant tumours with poor prognosis. Treatment involves chemotherapy and/or radiotherapy; however, there is currently no standard treatment for recurrence, and prognosis remains unfavourable. Inflammatory mediators and microRNAs (miRNAs) influence the aggressiveness of GBM, being involved in the communication with the cells of the tumour parenchyma, including microglia/macrophages, and maintaining an immunosuppressive microenvironment.

View Article and Find Full Text PDF

Galectin-1 and galectin-3 in male reproduction - impact in health and disease.

Semin Immunopathol

January 2025

Institute of Anatomy and Cell Biology, Hessian Centre of Reproductive Medicine, Justus-Liebig University Giessen, Aulweg 123, 35392, Giessen, Germany.

The formation and differentiation of mature, motile male germ cells, which can fertilize the egg and ensure successful implantation and development of a healthy embryo, are essential functions of the testis and epididymis. Spermatogenesis is a complex, multistep process that results in the formation of motile haploid gametes, requiring an immunoregulatory environment to maintain tolerance to developing neo-antigens. Different cell types (Sertoli cells, macrophages), immunoregulatory factors and tolerance mechanisms are involved.

View Article and Find Full Text PDF

Background: Anti-N-methyl-D-aspartate receptor encephalitis (anti-NMDARE) is a prevalent type of autoimmune encephalitis caused by antibodies targeting the NMDAR's GluN1 subunit. While significant progress has been made in elucidating the pathophysiology of autoimmune diseases, the immunological mechanisms underlying anti-NMDARE remain elusive. This study aimed to characterize immune cell interactions and dysregulation in anti-NMDARE by leveraging single-cell multi-omics sequencing technologies.

View Article and Find Full Text PDF

Functional injectable hydrogel (IH) is promising for infected bone defects (IBDs) repair, but how to endow it with desired antibacterial/immunoregulatory functions as well as avoid mechanical failures during its manipulation has posed as main challenges. Herein, rosmarinic acid (RosA), a natural product with antibacterial/immunoregulatory activities, was utilized to develop a FCR IH through forming phenylboronic acid ester bonds with 4-formylphenyl phenylboronic acid (4-FPBA) grafted chitosan (CS) (FC). After being applied to the IBD site, the FCR IH was then injected with tobramycin (Tob) solution, another alkaline antibacterial drug, to induce in situ crystallization of the FC, endowing the resultant FCRT hydrogel with adaptively enhanced mechanical strength and structural stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!