Gait and balance disorders are the major source of motor disabilities in advanced forms of Parkinson's disease (PD). Low-frequency stimulation of the pedunculopontine nucleus area (PPNa-DBS) has been recently proposed to treat these symptoms with variable clinical results. To further understand the effects of PPNa-DBS on resistant gait and balance disorders, we performed a randomised double-blind cross-over study in six PD patients. Evaluation included clinical assessment of parkinsonian disability, quality of life and neurophysiological recordings of gait. Evaluations were done 1 month before, 4 and 6 months after surgery with four double-blinded conditions assessed: with and without PPNa-DBS, with and without levodopa treatment. Four patients completed the study and two patients were excluded from the final analysis because of peri-operative adverse events (haematoma, infection). Clinically, the combination of PPNa-DBS and levodopa treatment produced a significant decrease of the freezing episodes. The frequency of falls also decreased in three out of four patients. From a neurophysiological point of view, PPNa-DBS significantly improved the anticipatory postural adjustments and double-stance duration, but not the length and speed of the first step. Interestingly, step length and speed improved after surgery without PPNa-DBS, suggesting that the lesioning effect of PPNa-DBS surgery alleviates parkinsonian akinesia. Quality of life was also significantly improved with PPNa-DBS. These results suggest that PPNa-DBS could improve gait and balance disorders in well-selected PD patients. However, this treatment may be riskier than others DBS surgeries in these patients with an advanced form of PD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00415-015-7744-1DOI Listing

Publication Analysis

Top Keywords

gait balance
16
balance disorders
16
ppna-dbs
10
parkinson's disease
8
study patients
8
quality life
8
ppna-dbs levodopa
8
levodopa treatment
8
length speed
8
patients
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!