Abiraterone acetate (ABI) is associated not only with a significant survival advantage in both chemotherapy-naive and -treated patients with metastatic castration-resistant prostate cancer (mCRPC), but also with a delay in time to development of Skeletal Related Events and in radiological skeletal progression. These bone benefits may be related to a direct effect on prostate cancer cells in bone or to a specific mechanism directed to bone microenvironment. To test this hypothesis we designed an in vitro study aimed to evaluate a potential direct effect of ABI on human primary osteoclasts/osteoblasts (OCLs/OBLs). We also assessed changes in bone turnover markers, serum carboxy-terminal collagen crosslinks (CTX) and alkaline phosphatase (ALP), in 49 mCRPC patients treated with ABI.Our results showed that non-cytotoxic doses of ABI have a statistically significant inhibitory effect on OCL differentiation and activity inducing a down-modulation of OCL marker genes TRAP, cathepsin K and metalloproteinase-9. Furthermore ABI promoted OBL differentiation and bone matrix deposition up-regulating OBL specific genes, ALP and osteocalcin. Finally, we observed a significant decrease of serum CTX values and an increase of ALP in ABI-treated patients.These findings suggest a novel biological mechanism of action of ABI consisting in a direct bone anabolic and anti-resorptive activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4494955 | PMC |
http://dx.doi.org/10.18632/oncotarget.3724 | DOI Listing |
J Bone Oncol
October 2024
Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK.
Nat Commun
January 2025
Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA.
Mechanisms related to tumor evasion from NK cell-mediated immune surveillance remain enigmatic. Dickkopf-1 (DKK1) is a Wnt/β-catenin inhibitor, whose levels correlate with breast cancer progression. We find DKK1 to be expressed by tumor cells and cancer-associated fibroblasts (CAFs) in patient samples and orthotopic breast tumors, and in bone.
View Article and Find Full Text PDFCirc Res
January 2025
Division of Cardiovascular Medicine, Department of Medicine (J.B.H., J.D.B., A.C.D.), Vanderbilt University Medical Center, Nashville, TN.
Cardiovascular and cardiometabolic diseases are leading causes of morbidity and mortality worldwide, driven in part by chronic inflammation. Emerging research suggests that the bone marrow microenvironment, or marrow niche, plays a critical role in both immune system regulation and disease progression. The bone marrow niche is essential for maintaining hematopoietic stem cells (HSCs) and orchestrating hematopoiesis.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
Overproduction of reactive oxygen species (ROS), elevated synovial inflammation, synovial hyperplasia and fibrosis are the main characteristic of microenvironment in rheumatoid arthritis (RA). Macrophages and fibroblast-like synoviocytes (FLSs) play crucial roles in the progression of RA. Hence, synergistic combination of ROS scavenging, macrophage polarization from pro-inflammatory M1 phenotype towards M2 anti-inflammatory phenotype, and restoring homeostasis of FLSs will provide a promising therapeutic strategy for RA.
View Article and Find Full Text PDFNat Commun
January 2025
Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, China.
Blood clots (BCs) play a crucial biomechanical role in promoting osteogenesis and regulating mesenchymal stem cell (MSC) function and fate. This study shows that BC formation enhances MSC osteogenesis by activating Itgb1/Fak-mediated focal adhesion and subsequent Runx2-mediated bone regeneration. Notably, BC viscoelasticity regulates this effect by modulating Runx2 nuclear translocation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!