A centrality measure based on the time of first returns rather than the number of steps is developed and applied to finding proton traps and access points to proton highways in the doped perovskite oxides: AZr(0.875)D(0.125)O3, where A is Ba or Sr and the dopant D is Y or Al. The high centrality region near the dopant is wider in the SrZrO3 systems than the BaZrO3 systems. In the aluminum-doped systems, a region of intermediate centrality (secondary region) is found in a plane away from the dopant. Kinetic Monte Carlo (kMC) trajectories show that this secondary region is an entry to fast conduction planes in the aluminum-doped systems in contrast to the highest centrality area near the dopant trap. The yttrium-doped systems do not show this secondary region because the fast conduction routes are in the same plane as the dopant and hence already in the high centrality trapped area. This centrality measure complements kMC by highlighting key areas in trajectories. The limiting activation barriers found via kMC are in very good agreement with experiments and related to the barriers to escape dopant traps.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4917469DOI Listing

Publication Analysis

Top Keywords

secondary region
12
proton traps
8
traps access
8
access points
8
points proton
8
proton highways
8
kinetic monte
8
monte carlo
8
centrality measure
8
dopant high
8

Similar Publications

Regional differences in the provision of home-visit rehabilitation services in Japan.

J Phys Ther Sci

January 2025

Department of Rehabilitation, School of Health Sciences, Tokyo University of Technology: 5-23-22 Nishikamata, Ota-ku, Tokyo 144-8535, Japan.

[Purpose] This study aimed to clarify regional disparities in the provision of home-visit rehabilitation services across all prefectures in Japan by performing a secondary analysis of government data. [Participants and Methods] The number of home-visit rehabilitation sessions per prefecture was determined to estimate regional disparities. Furthermore, the data for 2013 and 2021 were compared to investigate changes in home-visit rehabilitation provision.

View Article and Find Full Text PDF

is a traditional Chinese medicinal herb rich in various bioactive secondary metabolites, such as alkaloids and flavonoids, and exhibits remarkable resistance to abiotic stress. The WRKY transcription factor (TF) family is one of the largest plant-specific TF families and plays a crucial role in plant growth, development, and responses to abiotic stress. However, a comprehensive genome-wide analysis of the WRKY gene family in has not yet been conducted.

View Article and Find Full Text PDF

tRNA gene content, structure, and organization in the flowering plant lineage.

Front Plant Sci

December 2024

National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines.

Transfer RNAs (tRNAs) are noncoding RNAs involved in protein biosynthesis and have noncanonical roles in cellular metabolism, such as RNA silencing and the generation of transposable elements. Extensive tRNA gene duplications, modifications to mature tRNAs, and complex secondary and tertiary structures impede tRNA sequencing. As such, a comparative genomic analysis of complete tRNA sets is an alternative to understanding the evolutionary processes that gave rise to the extant tRNA sets.

View Article and Find Full Text PDF

To assess the repeatability of a microperimetry methodology for quantifying visual function changes in the junctional zone of eyes with geographic atrophy (GA) in the clinical trial context. A post hoc analysis of the OAKS phase III trial was conducted, which enrolled patients with GA secondary to age-related macular degeneration. Microperimetry using a standard 10-2 fovea centered grid was performed at baseline and follow-up visits.

View Article and Find Full Text PDF

Unlabelled: Structural RNAs exhibit a vast array of recurrent short 3D elements involving non-Watson-Crick interactions that help arrange canonical double helices into tertiary structures. We present CaCoFold-R3D, a probabilistic grammar that predicts these RNA 3D motifs (also termed modules) jointly with RNA secondary structure over a sequence or alignment. CaCoFold-R3D uses evolutionary information present in an RNA alignment to reliably identify canonical helices (including pseudoknots) by covariation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!