3-D cardiac MRI in free-breathing newborns and infants: when is respiratory gating necessary?

Pediatr Radiol

Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany.

Published: September 2015

AI Article Synopsis

  • Newborns and small infants tend to have shallow breathing, which impacts cardiac MRI procedures.
  • A study analyzed 110 data sets with and without respiratory gating to determine when gating is necessary.
  • No significant differences in image quality were found, suggesting that non-gated sequences can be used for infants under specific age, weight, and size criteria.

Article Abstract

Background: Newborns and small infants have shallow breathing.

Objective: To suggest criteria for when respiratory gating is necessary during cardiac MRI in newborns and infants.

Materials And Methods: One-hundred ten data sets of newborns and infants with (n = 92, mean age: 1.9 ± 1.7 [SD] years) and without (n = 18, mean age: 1.6 ± 1.8 [SD] years) navigator gating were analysed retrospectively. The respiratory motion of the right hemidiaphragm was recorded and correlated to age, weight, body surface area and qualitative image quality on a 4-point score. Quantitative image quality assessment was performed (sharpness of the delineation of the ventricular septal wall) as well as a matched-pair comparison between navigator-gated and non-gated data sets.

Results: No significant differences were found in overall image quality or in the sharpness of the ventricular septal wall between gated and non-gated scans. A navigator acceptance of >80% was frequently found in patients ages <12 months, body surface area <0.40 m(2), body weight <10 kg and a size of <80 cm.

Conclusion: Sequences without respiratory gating may be used in newborns and small infants, in particular if age <12 months, body surface area <0.40 m(2), body weight <10 kg and height <80 cm.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00247-015-3346-4DOI Listing

Publication Analysis

Top Keywords

image quality
12
cardiac mri
8
newborns infants
8
respiratory gating
8
[sd] years
8
ventricular septal
8
septal wall
8
3-d cardiac
4
mri free-breathing
4
newborns
4

Similar Publications

Simulations of the Potential for Diffraction Enhanced Imaging at 8 keV using Polycapillary Optics.

Biomed Phys Eng Express

January 2025

Physics Department, University at Albany, 1400 Washington Ave, Albany, New York, 12222-0100, UNITED STATES.

Conventional x-ray radiography relies on attenuation differences in the object, which often results in poor contrast in soft tissues. X-ray phase imaging has the potential to produce higher contrast but can be difficult to utilize. Instead of grating-based techniques, analyzer-based imaging, also known as diffraction enhanced imaging (DEI), uses a monochromator crystal with an analyzer crystal after the object.

View Article and Find Full Text PDF

Polydopamine-Mediated, Centrifugal Force-Driven Gold Nanoparticle-Deposited Microneedle SERS Sensors for Food Safety Monitoring Theoretical Study of the SERS Substrate Fabrication.

ACS Sens

January 2025

The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China.

Microneedle (MN) sensors have great promise for food safety detection, but the rapid preparation of MNs for surface-enhanced Raman scattering (SERS) sensors with tunable and homogeneous nanoparticles remains a great challenge. To address this, a SERS sensor of gold nanoparticles@polydopamine@poly(methyl methacrylate) MN (AuNPs@PDA@PMMA-MN) was developed. The extended-Derjaguin-Landau-Verwey-Overbeek theory was applied to calculate the interaction energy between AuNPs and PDA.

View Article and Find Full Text PDF

To improve the expressiveness and realism of illustration images, the experiment innovatively combines the attention mechanism with the cycle consistency adversarial network and proposes an efficient style transfer method for illustration images. The model comprehensively utilizes the image restoration and style transfer capabilities of the attention mechanism and the cycle consistency adversarial network, and introduces an improved attention module, which can adaptively highlight the key visual elements in the illustration, thereby maintaining artistic integrity during the style transfer process. Through a series of quantitative and qualitative experiments, high-quality style transfer is achieved, especially while retaining the original features of the illustration.

View Article and Find Full Text PDF

Purpose: Recent advancements in imaging, particularly 18F-fluorodeoxyglucose positron-emission tomography-computed tomography (FDG-PET/CT), have improved the detection of involved lymph nodes, thus influencing staging accuracy and potentially treatment outcomes. This study is a post hoc analysis of the GAZAI trial data to evaluate the impact of FDG-PET/CT versus computed tomography (CT) alone on radiation target volumes for involved-site radiotherapy (IS-RT) in early-stage follicular lymphoma (FL).

Methods: All patients in the GAZAI trial underwent pretherapeutic FDG-PET/CT examinations, which were subject to central quality control.

View Article and Find Full Text PDF

Background: Preoperative chemoradiotherapy combined with total mesorectal excision (TME) is a standard treatment for locally advanced rectal cancer (LARC). However, lateral pelvic lymph nodes (LPLNs) are often inadequately treated with standard regimens. This study examines the treatment and postoperative outcomes in LARC patients receiving a simultaneous integrated boost (SIB) for LPLNs during long-course chemoradiotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!