Regulatory networks in retinal ischemia-reperfusion injury.

BMC Genet

Department of Anatomical Science and Neurobiology, University of Louisville, School of Medicine, 500 S. Preston Street, Louisville, KY, 40292, USA.

Published: April 2015

Background: Retinal function is ordered by interactions between transcriptional and posttranscriptional regulators at the molecular level. These regulators include transcription factors (TFs) and posttranscriptional factors such as microRNAs (miRs). Some studies propose that miRs predominantly target the TFs rather than other types of protein coding genes and such studies suggest a possible interconnection of these two regulators in co-regulatory networks.

Results: Our lab has generated mRNA and miRNA microarray expression data to investigate time-dependent changes in gene expression, following induction of ischemia-reperfusion (IR) injury in the rat retina. Data from different reperfusion time points following retinal IR-injury were analyzed. Paired expression data for miRNA-target gene (TG), TF-TG, miRNA-TF were used to identify regulatory loop motifs whose expressions were altered by the IR injury paradigm. These loops were subsequently integrated into larger regulatory networks and biological functions were assayed. Systematic analyses of the networks have provided new insights into retinal gene regulation in the early and late periods of IR. We found both overlapping and unique patterns of molecular expression at the two time points. These patterns can be defined by their characteristic molecular motifs as well as their associated biological processes. We highlighted the regulatory elements of miRs and TFs associated with biological processes in the early and late phases of ischemia-reperfusion injury.

Conclusions: The etiology of retinal ischemia-reperfusion injury is orchestrated by complex and still not well understood gene networks. This work represents the first large network analysis to integrate miRNA and mRNA expression profiles in context of retinal ischemia. It is likely that an appreciation of such regulatory networks will have prognostic potential. In addition, the computational framework described in this study can be used to construct miRNA-TF interactive systems networks for various diseases/disorders of the retina and other tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4424502PMC
http://dx.doi.org/10.1186/s12863-015-0201-4DOI Listing

Publication Analysis

Top Keywords

regulatory networks
12
ischemia-reperfusion injury
12
retinal ischemia-reperfusion
8
expression data
8
time points
8
early late
8
associated biological
8
biological processes
8
retinal
6
regulatory
5

Similar Publications

Introduction: Glioma is the most common primary malignant brain tumor. Despite advances in surgical techniques and treatment regimens, the therapeutic effects of glioma remain unsatisfactory. Immunotherapy has brought new hope to glioma patients, but its therapeutic outcomes are limited by the immunosuppressive nature of the tumor microenvironment (TME).

View Article and Find Full Text PDF

Expression profiling of circular RNAs in sepsis-induced acute gastrointestinal injury: insights into potential biomarkers and mechanisms.

Cytotechnology

April 2025

Department of Critical Care Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, North Dongmen Road, Luohu District, Shenzhen, 518020 Guangdong China.

This study aimed to investigate the role of circular RNAs (circRNAs) in sepsis-induced acute gastrointestinal injury (AGI), focusing on their potential as biomarkers and their involvement in disease progression. Peripheral blood samples from 14 patients with sepsis-induced AGI and healthy volunteers were collected. RNA sequencing was performed to profile circRNA and miRNA expression.

View Article and Find Full Text PDF

Introduction: As a hallmark feature of amyotrophic lateral sclerosis (ALS), bulbar involvement significantly impacts psychosocial, emotional, and physical health. A validated objective marker is however lacking to characterize and phenotype bulbar involvement, positing a major barrier to early detection, progress monitoring, and tailored care. This study aimed to bridge this gap by constructing a multiplex functional mandibular muscle network to provide a novel objective measurement tool of bulbar involvement.

View Article and Find Full Text PDF

Van der Woude syndrome (VWS) is an autosomal dominant disorder characterized by lower lip pits and orofacial clefts (OFCs). With a prevalence of approximately 1 in 35,000 live births, it is the most common form of syndromic clefting and may account for ~2% of all OFCs. The majority of VWS is attributed to genetic variants in IRF6 (~70%) or GRHL3 (~5%), leaving up to 25% of individuals with VWS without a molecular diagnosis.

View Article and Find Full Text PDF

Two-pore channel regulators - Who is in control?

Front Physiol

January 2025

Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany.

Two-pore channels (TPCs) are adenine nucleotide and phosphoinositide regulated cation channels. NAADP activates and ATP blocks TPCs, while the endolysosomal phosphoinositide PI(3,5)P activates TPCs. TPCs are ubiquitously expressed including expression in the innate as well as the adaptive immune system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!