Chronographic Theory of Development, Aging, and Origin of Cancer: Role of Chronomeres and Printomeres.

Curr Aging Sci

Institute of Biochemical Physics, Russian Academy of Sciences, ul. Chernyakhovskogo 5-94, 125319 Moscow, Russia.

Published: April 2015

It is supposed that the development and aging of multicellular animals and humans are controlled by a special form of the clock mechanism - a chronograph. The development of animals and their aging are interconnected by the program of the species lifespan that has been selected in the evolution of each species to fit the resources of its ecological niche. The theory is based on the idea about a controlled loss by the neurons in the brain of hypothetical organelles - chronomeres that represent themselves small DNA molecules, which are amplificates of the segments of chromosomal DNA. A regular mode of the process of chronomere losses by neurons is provided by a pacemaker localized in the pineal gland and activated at least once per lunar month. Neurons, consecutively losing their chronomeres, are organized in the brain in the temporal relay race. Analogues of chronomeres, namely printomeres, are supposed to exist in dividing non-neuronal cells. Printomeres are not involved in a performance of temporal function, instead they are responsible for the maintenance in dividing cells of their memory about the state of differentiation. A critical shortening or loss of a printomere in a dividing cell leads to a cellular senescence, whereas telomere shortening is a bystander of this process. Thus, aging of a multicellular organism is associated with the loss of chronomeres, whereas senescence of dividing cells is associated with the loss of regulatory RNAs encoded by printomeres. If the cells that have lost their printomeres are environmentally forced to divide, they can transform into cancer cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

development aging
8
chronomeres printomeres
8
printomeres supposed
8
aging multicellular
8
dividing cells
8
associated loss
8
chronomeres
5
printomeres
5
cells
5
chronographic theory
4

Similar Publications

Childhood obesity increases the risk of developing metabolic diseases in adulthood, since environmental stimuli during critical windows of development can impact on adult metabolic health. Studies demonstrating the effect of prepubertal diet on adult metabolic disease risk are still limited. We hypothesized that a prepubertal control diet (CD) protects the adult metabolic phenotype from diet-induced obesity (DIO), while a high-fat diet (HFD) would predispose to adult metabolic alterations.

View Article and Find Full Text PDF

In this study, we investigated age-related changes in clinical laboratory data and their association with mortality in dogs from the Golden Retriever Lifetime Study. By analyzing complete blood count (CBC) and biochemistry data from 2'412 Golden Retrievers over 16,678 visits, we observed significant changes during the first 2 years of life and throughout aging. Based on these observations, we developed a biological aging clock using a LASSO model to predict age based on blood markers, achieving an accuracy of R = 0.

View Article and Find Full Text PDF

Tendon injuries and disorders associated with mechanical tendon overuse are common musculoskeletal problems. Even though tendons play a central role in human movement, the intrinsic healing process of tendon is very slow. So far, it is known that tendon cell activity is supported by several interstitial cells within the tendon.

View Article and Find Full Text PDF

Introduction: Cistanche deserticola Ma (CD), an edible and medicinal plant native to Xinjiang, Inner Mongolia, and Gansu in China, is rich in bioactive polysaccharides known for their health-promoting properties. The polysaccharides of C. deserticola (CDPs) have been shown to possess a range of beneficial activities, including immunomodulatory, anti-aging, antioxidant, and anti-osteoporosis effects.

View Article and Find Full Text PDF

Communicating scientific evidence: drugs for Alzheimer's disease as a case study.

Curr Med Res Opin

January 2025

Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.

This paper reviews the scientific evidence on new anti-amyloid monoclonal antibodies for treating Alzheimer's disease as a case study for improving scientific evidence communication. We introduce five guidelines condensed from the biomedical evidence literature but adapted to the short format of science communication in e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!