Purpose: Programmed Death-1 (PD-1) and its ligand, PD-L1, are regulators of immune/ inflammatory mechanisms. We explored the potential involvement of PD-1/PD-L1 pathway in the inflammatory response and tissue damage in cardiac injury models.
Experimental Design: Ischemic-reperfused and cryoinjured hearts were processed for flow cytometry and immunohistochemical studies for determination of cardiac PD-1 and PD-L1 in the context of assessment of the growth arrest- and DNA damage-inducible protein 153 (GADD153) which regulates both inflammation and cell death. Further, we explored the potential ability of injured cardiac cells to influence proliferation of T lymphocytes.
Results: The isolated ischemic-reperfused hearts displayed marked increases in expression of PD-1 and PD-L1 in cardiomyocytes; however, immunofluorescent studies indicate that PD-1 and PD-L1 are not primarily co-expressed on the same cardiomyocytes. Upregulation of PD-1/PD-L1 was associated with a) marked increases in GADD153 and interleukin (IL)-17 but a mild increase in IL-10 and b) disruption of mitochondrial membrane potential (ψm) as well as apoptotic and necrotic cell death. Importantly, while isotype matching treatment did not affect the aforementioned changes, treatment with the PD-L1 blocking antibody reversed those effects in association with marked cardioprotection. Further, ischemic-reperfused cardiac cells reduced proliferation of T lymphocytes, an effect partially reversed by PD-L1 antibody. Subsequent studies using the cryoinjury model of myocardial infarction revealed significant increases in PD-1, PD-L1, GADD153 and IL-17 positive cells in association with significant apoptosis/necrosis.
Conclusions: The data suggest that upregulation of PD-1/PD-L1 pathway in cardiac injury models mediates tissue damage likely through a paracrine mechanism. Importantly, inhibition of T cell proliferation by ischemic-reperfused cardiac cells is consistent with the negative immunoregulatory role of PD-1/PD-L1 pathway, likely reflecting an endogenous cardiac mechanism to curtail the deleterious impact of infiltrating immune cells to the damaged myocardium. The balance of these countervailing effects determines the extent of cardiac injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4406739 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0124059 | PLOS |
Redox Rep
December 2025
Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.
Objective: Myocardial ischemia-reperfusion injury (MIRI) is a highly complex disease with high morbidity and mortality. Studying the molecular mechanism of MIRI and discovering new targets are crucial for the future treatment of MIRI.
Methods: We constructed the MIRI rat model and hypoxia/reoxygenation (H/R) injury cardiomyocytes model.
Eur J Trauma Emerg Surg
January 2025
Emergency Department, Habib bourguiba university hospital, Faculty of Medicine, Sfax University, Majida Boulila Avenue, Sfax, Tunisia.
Introduction: Electrical injuries (EIs) represent a significant clinical challenge due to their complex pathophysiology and variable presentation, ranging from minor burns to severe internal organ damage. Despite their prevalence in both; domestic and occupational settings, there remains a rareness of systematic guidelines and comprehensive literature to aid clinicians in effectively managing these injuries. Understanding these factors is crucial for developing protocols that can mitigate the risk of delayed complications, such as cardiac arrhythmias, in patients who initially appear stable.
View Article and Find Full Text PDFIntensive Care Med
January 2025
Center for Disease Mechanisms Research, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
Purpose: Major cardiovascular surgery imposes high physiologic stress, often causing severe organ dysfunction and poor outcomes. The underlying mechanisms remain unclear. This study investigated metabolic changes induced by major cardiovascular surgery and the potential role of identified metabolic signatures in postoperative acute kidney injury (AKI).
View Article and Find Full Text PDFCatheter Cardiovasc Interv
January 2025
Department of Cardiology, Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
We report the case of a 73-year-old male with a history of recurrent coronary interventions who presented with progressive angina and was diagnosed with a chronic total occlusion (CTO) of a heavily calcified and tortuous right coronary artery (RCA). Standard antegrade and retrograde techniques were attempted but failed due to the complexity of the lesion. A novel "Drag-Drill" technique was employed, utilizing a retrogradely externalized RG3 guidewire as a rotational atherectomy wire, enabling successful rotational atherectomy and percutaneous coronary intervention (PCI).
View Article and Find Full Text PDFClin Toxicol (Phila)
January 2025
Pediatric Intensive Care Unit, Emergency Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
Introduction: Veno-arterial extracorporeal membrane oxygenation is frequently considered and implemented to help manage patients with cardiogenic shock from acute poisoning. However, utilization of veno-venous extracorporeal membrane oxygenation in acutely poisoned patients is largely unknown.
Method: We conducted a retrospective study analyzing the epidemiologic, clinical characteristics and survival of acutely poisoned patients placed on veno-venous extracorporeal membrane oxygenation using the Extracorporeal Life Support Organization registry.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!