Synthesis of Cu2O-amine-functionalized graphite nanosheet (AFGNS) composite has been accomplished at room temperature. In the first step, AFGNS is synthesized by wet chemical functionalization where the -NH2 groups formed on nanosheet surface help to anchor the Cu(2+) ions homogeneously through coordinate bonds. Reduction of Cu(2+) (3.4 × 10(-2) mmol) in the presence of NaBH4 (1.8 mmol) can be restricted to Cu(1+) on AFGNS surface at room temperature. This leads to the formation of uniform Cu2O nanoparticles (NP) on AFGNS. The role played by the -NH2 groups in anchoring Cu(2+) ions and followed by stabilizing the Cu2O NP on AFGNS was understood by controlled reactions in the absence of -NH2 groups and without any graphitic support, respectively. The prepared Cu2O-AFGNS composite shows excellent catalytic activity toward degradation of an azo dye, methyl orange, which is an environmental pollutant. The dye degradation proceeds with high rate constant value, and the composite shows high stability and excellent reuse capability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.5b00970 | DOI Listing |
Inorg Chem
January 2025
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China.
The fixation of carbon dioxide (CO) directly from flue gas into valuable chemicals like 2-oxazolidinones is of great significance for economic and environmental benefits, which is typically catalyzed by noble-metal catalysts and under harsh conditions. Herein, a novel 2-fold interpenetrated framework {[Co(μ-O)(TCA)(HDPTA)]·2HO·2DMF} [Co(II)-based metal-organic framework ()] containing [Co] clusters and highly dense amino groups (-NH) dispersed in the channel was prepared, exhibiting high solvent/pH stability and CO adsorption capacity (24.9 cm·g).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China.
Electronic grade hydrogen peroxide plays a crucial role in the fabrication of large-scale integrated circuits. However, hydrogen peroxide prepared by the anthraquinone method contains impurities such as lead ions (Pb) and phosphate, which can seriously affect the yield of the circuit. Traditional adsorbent materials have difficulty in solving the problem of simultaneous adsorption of trace anions and cations in hydrogen peroxide due to the single adsorption site and poor adsorption kinetics.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Quality and Technical Supervision, Hebei University, Baoding 071002, China.
The extensive use of tetracyclines in livestock poses health risks due to their residues in animal-derived food; therefore, developing simple detection methods to replace complex traditional approaches is of paramount importance. Here, we developed a dual-ligand zinc-based metal-organic framework material, Zn-BTC-BDC-NH (denoted as ZTD), for the detection of tetracyclines. The intrinsic blue fluorescence of ZTD was quenched upon the introduction of tetracyclines due to electron transfer from -NH of ZTD to -CO- and -OH groups of tetracycline molecules; meanwhile, the new green fluorescence emission was generated through π-π stacking between aromatic rings and the formation of complexes between Zn and C-O/C═O groups.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China.
Untreated waste liquid mixtures often support large bacterial populations, posing challenges to effective purification due to high volume and limited filtration efficiency. This study aims to develop a multifunctional filtration membrane that combines both filtration and sterilization, enhancing overall purification efficiency. Using electrospinning technology, we fabricated a superhydrophilic, oil-repellent membrane by integrating the hydrophilic properties of chitosan, antibacterial N-halamine groups, and the mechanical strength of cellulose nanocrystals (CNC).
View Article and Find Full Text PDFBiomedicines
January 2025
Department of Chemistry, Faculty of Sciences, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale 17100, Turkey.
: Tannic acid (TA) is a well-known natural phenolic acid composed of ten gallic acids linked to each other with ester bonding possessing excellent antioxidant properties in addition to antimicrobial and anticancer characteristics. Arginine (ARG) is a positively charged amino acid at physiological pH because of nitrogen-rich side chain. : Here, poly(tannic acid-co-arginine) (p(TA-co-ARG)) particles at three mole ratios, TA:ARG = 1:1, 1:2, and 1:3, were prepared via a Mannich condensation reaction between TA and ARG by utilizing formaldehyde as a linking agent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!