Sensitivity of nonuniform sampling NMR.

J Phys Chem B

†Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States.

Published: June 2015

AI Article Synopsis

  • Nonuniform sampling (NUS) in nuclear magnetic resonance spectroscopy improves signal-to-noise ratio (SNR) by up to 2-fold compared to uniform sampling (US), especially in experiments with decaying signals.
  • The NUS Sensitivity Theorem states that using decreasing sampling density on exponentially decaying signals always enhances SNR, supporting better sensitivity despite conservative NUS applications.
  • A matched NUS SNR Theorem shows that this method can overcome limitations of US, allowing for improved SNR and resolution beyond the typically restrictive evolution time threshold of 1.26T2, demonstrating the advantages of NUS in experimental designs.

Article Abstract

Many information-rich multidimensional experiments in nuclear magnetic resonance spectroscopy can benefit from a signal-to-noise ratio (SNR) enhancement of up to about 2-fold if a decaying signal in an indirect dimension is sampled with nonconsecutive increments, termed nonuniform sampling (NUS). This work provides formal theoretical results and applications to resolve major questions about the scope of the NUS enhancement. First, we introduce the NUS Sensitivity Theorem in which any decreasing sampling density applied to any exponentially decaying signal always results in higher sensitivity (SNR per square root of measurement time) than uniform sampling (US). Several cases will illustrate this theorem and show that even conservative applications of NUS improve sensitivity by useful amounts. Next, we turn to a serious limitation of uniform sampling: the SNR by US decreases for extending evolution times, and thus total experimental times, beyond 1.26T2 (T2 = signal decay constant). Thus, SNR and resolution cannot be simultaneously improved by extending US beyond 1.26T2. We find that NUS can eliminate this constraint, and we introduce the matched NUS SNR Theorem: an exponential sampling density matched to the signal decay always improves the SNR with additional evolution time. Though proved for a specific case, broader classes of NUS densities also improve SNR with evolution time. Applications of these theoretical results are given for a soluble plant natural product and a solid tripeptide (u-(13)C,(15)N-MLF). These formal results clearly demonstrate the inadequacies of applying US to decaying signals in indirect nD-NMR dimensions, supporting a broader adoption of NUS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4857715PMC
http://dx.doi.org/10.1021/jp5126415DOI Listing

Publication Analysis

Top Keywords

nonuniform sampling
8
decaying signal
8
nus
8
sampling density
8
uniform sampling
8
signal decay
8
evolution time
8
snr
7
sampling
6
sensitivity
4

Similar Publications

This study presents a cutting-edge imaging technique for special unmanned vehicles (UAVs) designed to enhance tunnel inspection capabilities. This technique integrates ghost imaging inspired by the human visual system with lateral inhibition and variable resolution to improve environmental perception in challenging conditions, such as poor lighting and dust. By emulating the high-resolution foveal vision of the human eye, this method significantly enhances the efficiency and quality of image reconstruction for fine targets within the region of interest (ROI).

View Article and Find Full Text PDF

Use of In Situ X-ray Absorption to Probe Reactivity: A Catalysis Golden Rule.

J Am Chem Soc

December 2024

Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.

The decomposition of ozone on supported manganese oxide catalysts, studied here, exemplifies reactions involving electron transfer. In situ extended X-ray absorption fine-structure spectra (Mn K-edge) on in situ treated samples show that the supported phase in MnO/SiO resembles MnO while that in MnO/AlO samples resembles MnO. In situ Raman spectroscopy shows the involvement of a common peroxide surface species.

View Article and Find Full Text PDF

Homonuclear decoupled INADEQUATE NMR methods with improved sensitivity and resolution in solid-state NMR.

J Magn Reson

December 2024

Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France. Electronic address:

The two-dimensional (2D) refocused INADEQUATE NMR experiment, which correlates double-quantum (DQ) and single-quantum (SQ) coherences, is widely used to probe the chemical connectivities in solids. Nevertheless, the multiplets along the F dimension reduce the resolution and sensitivity of this experiment. The Composite-Refocusing (CR) technique with two excitation pulses has been proposed to suppress these multiplets in 2D INADEQUATE spectra of liquids.

View Article and Find Full Text PDF

The IMPROVE program (Interagency Monitoring of PROtected Visual Environments) tracks long-term trends in the composition and optics of regional haze aerosols in the United States. The absorptance of red (633-nm) light is monitored by filter photometry of 24 h-integrated samples of fine particulate matter (PM 2.5).

View Article and Find Full Text PDF

This paper theoretically explores the coexistence of synchronization and state estimation analysis through output sampling measures for a class of memristive neural networks operating within the flux-charge domain. These networks are subject to constant delayed responses in self-feedback loops and time-varying delayed responses incorporated into the activation functions. A contemporary output sampling controller is designed to discretize system dynamics based on available output measurements, which enhances control performance by minimizing update frequency, thus overcoming network bandwidth limitations and addressing network synchronization and state vector estimation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!